UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

UNIDAD ACADÉMICA:

FACULTAD DE CIENCIAS QUÍMICAS

PROGRAMA DEL CURSO: FISICOQUÍMICA I

DES:	Ingeniería y Ciencias					
Programa(s) académico(s)	Lic. Ingeniero Químico, Ingeniero en Alimentos, Lic. Químico, Lic. QBP					
Tipo de Materia: Obligatoria / Optativa	Obligatoria					
Clave de la Materia:	CQB416					
Semestre:	Cuarto					
Área en plan de estudios (B,P,E,O):	Básica					
Total de horas por semana:	7					
h./semana trabajo presencial/virtual	3					
h./semana laboratorio/taller	2					
h. trabajo extra-clase:	2					
Total de horas por semestre: Total de horas semana por 16 semanas	112					
Créditos totales:	7					
Fecha de actualización:	Febrero 2024					
Responsable(s) del diseño del programa del curso:	Nora Aydeé Sanchez Bojorge, Luz María Rodríguez Valdez, <u>Rosalia Ruiz Santos</u>					
Prerrequisito (s):	CQP316					

DESCRIPCIÓN DE LA UNIDAD DE APRENDIZAJE/ CURSO:

Proporciona fundamentos teóricos que explican los equilibrios múltiples (químico y de fases), así como su aplicación en la resolución de problemas y realización de experimentos que apoyan los conocimientos adquiridos, mediante diversas estrategias como casos de estudio, exposiciones, prácticas experimentales y resolución de problemas.

COMPETENCIA PRINCIPAL QUE SE DESARROLLA:

DB1. CIENCIAS QUÍMICAS

Resuelve problemas básicos, teóricos y experimentales de las ciencias químicas fundamentales para la interpretación de la naturaleza química de la materia, con un enfoque socialmente responsable.

DB2. FUNDAMENTOS DE ANÁLISIS FÍSICOS

Analiza los fenómenos físicos relacionados a las áreas de ciencias químicas e ingenierías.

DB3. HERRAMIENTAS MATEMÁTICAS

Resuelve problemas tanto abstractos como aplicados en las áreas de las ciencias químicas e ingenierías, aplicando las herramientas, el lenguaje o los métodos del modelado matemático.

P1. CIENCIAS E INGENIERÍA

Aplica los conocimientos y metodologías para el planteamiento y resolución de problemas complejos de las ciencias naturales y de la ingeniería, para la toma de decisiones en un contexto de responsabilidad social y del medio ambiente.

E1. CIENCIAS BÁSICAS DE LA INGENIERÍA QUÍMICA

Aplica los conocimientos básicos de la ingeniería química que permitan la comprensión, descripción y solución de problemas relacionados a los principios de conservación de materia y energía.

B1. EXCELENCIA Y DESARROLLO HUMANO

La excelencia educativa promueve el desarrollo humano integral con resultados tangibles obtenidos en la formación de profesionales con conciencia ética y solidaria, pensamiento crítico y creativo, así como una capacidad innovadora, productiva y emprendedora.

Se puntualiza en los aprendizajes, como referente para construir nuevas propuestas y soluciones en el marco de la innovación y pertinencia social, con matices éticos y de valores, que desde su particularidad cultural le permitan respetar la diversidad, promover la inclusión, valorar la interculturalidad.

OTRAS COMPETENCIAS A LAS QUE SE CONTRIBUYE CON EL DESARROLLO DE LA UNIDAD DE APRENDIZAJE/CURSO:

E1. SISTEMAS FISICOQUÍMICOS

Aplica las leyes y fundamentos fisicoquímicos para explicar las reacciones químicas, procesos químicos, electroquímica, fenómenos de superficies, cinética química, química cuántica que permitan dar respuesta a problemáticas del entorno en las áreas donde hay trasformaciones de la materia y energía.

DOMINIOS (Se toman de las competencias)	OBJETOS DE ESTUDIO (Contenidos necesarios para desarrollar cada uno de los dominios, temas y subtemas)	RESULTADOS DE APRENDIZAJE (Se plantean de los dominios y contenidos)	METODOLOGÍA (Estrategias, secuencias, recursos didácticos)	EVIDENCIAS DE DESEMPEÑO (Productos tangibles que permiten valorar los resultados de aprendizaje)
Dominio de competencia disciplinar básica, profesional y/ especifica DB2.4 Explica procesos fisicoquímicos considerando las variables, ecuaciones de estado y funciones relacionadas con	1.1Entalpía de reacción Conceptos previos. Determinación de Entalpía de reacción, solución y combustión. Dependencia de la Temperatura. 1.2Entropía de reacción Determinación de Entropía de reacción. Dependencia de la temperatura y la presión	sistemas fisicoquímicos, tales como gas ideal y reacciones químicas, mediante la deducción de las expresiones	Exposición por estudiante Exposiciones del profesor Práctica de laboratorio	Exámenes escritos Problemario Registro de procedimientos, observaciones y resultados de prácticas de

las leyes termodinámicas. DB3.1 Utiliza el razonamiento lógico-matemático en la comprensión de situaciones problema. Dominio de competencia profesional y/o especifica P1.1 Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad.	Variación de la función de Gibbs con la presión y la temperatura. Potencial químico.	termodinámicos y en reacciones químicas. Aplica las energías de Gibbs para predecir la espontaneidad o no-espontaneidad de los procesos químicos.	Resolución de problemas Plataforma	laboratorio en bitácora. Reportes Orales Plataforma Exposiciones Cuestionarios
B1.2 Propone la solución de problemas con una base interdisciplinar (científica, humanística y tecnológica).				
Dominio de competencia disciplinar básica, profesional y/ especifica	Químico 2.1Equilibrio químico. Grado de Avance de reacción. Cociente de reacción. Constante de equilibrio	Emplea la energía de Gibbs para deducir constantes de equilibrio termodinámico. Expresa la forma en que progresa una reacción conforme los reactivos	Exposición por estudiante Exposiciones del profesor	Exámenes escritos Problemario
problemas	termodinámico. Disoluciones y fases condensadas.	se convierten en productos y llegan a un	Práctica de laboratorio	Registro de procedimientos,

	T			
inherentes a las	Actividad química y	estado de equilibrio	Resolución de	observaciones y
áreas científicas.	fugacidad	termodinámico.	problemas	resultados de
	2.2Desplazamiento del			prácticas de
B1.2 Propone la	equilibrio Principio de	Calcula concentraciones		laboratorio en
<mark>solución de</mark>	LeChatelier	de equilibrio en		bitácora.
problemas con	Dependencia de la	reacciones que		
<mark>una base</mark>	constante de equilibrio con la temperatura.	involucran gases		Reportes Orales
interdisciplinar	Desplazamiento del	ideales, disoluciones y		
(científica,	equilibrio con cambios de	fases condensadas.		Plataforma
<mark>humanística y</mark>	presión.			
tecnológica).				Exposiciones
Dominio de competencia profesional y/o especifica				Cuestionarios
profesional y/o especifica				
Específicas para				
Químicos				
E1.1 Emplea los				
principios				
fisicoquímicos				
para entender el				
equilibrio				
químico,				
cinética				
química,				
electroquímica,				
termodinámica, catálisis v				
•				
fisicoquímica de superficies con				
el fin de explicar				
fenómenos				
químicos de				
diversa				
complejidad,				
para la				
resolución de				
problemas				
teóricos y				
prácticos en el				
ámbito del				
laboratorio.				

DB3.2 Resuelve mediante el uso de herramientas matemáticas, problemas inherentes a las áreas científicas. DB1.4 Relaciona la teoría con los procedimientos básicos de laboratorio, del trabajo analítico considerando las normas de seguridad vigentes en el uso correcto de reactivos y equipo de laboratorio. Objeto de estudio 3 3. Equilibrio de Fase y Transiciones. Calor latente de fusión, evaporación y sublimación. 3.2Presión de Vapor y Punto de ebullición. 3.3Ecuaciones de equilibrio Ecuación de Clapeyron. Ecuación de Clausius-Clapeyron 3.4 Diagramas de fase y regla de las fases en el uso correcto de reactivos y equipo de laboratorio.	Determina cual fase se favorece termodinámicamente a una temperatura y presión dadas. Emplea la Regla de las Fases para interpretar diagramas de equilibrio de fases de un componente. Calcula presiones de vapor y puntos de ebullición empleando ecuación de Clausius-Clapeyron	Exposición por estudiante Exposiciones del profesor Práctica de laboratorio Resolución de problemas Dispositivo de aprendizaje	Exámenes escritos Problemario Registro de procedimientos, observaciones y resultados de prácticas de laboratorio en bitácora. Reportes Orales Plataforma Exposiciones Cuestionarios
E1.2 Emplea modelos matemáticos relacionados para establecer el equilibrio físico, químico y termodinámico. E1.3 Aplica los resultados obtenidos en la resolución de problemas específicos de Fisicoquímica (Electroanálisis, Física estadística y dinámica molecular, equilibrio químico, cinética Cipatro de estudio 4 1. Equilibrio Multicomponente 4.1Generalidades y Aplicaciones en la industria. Regla de Fases de Gibbs en sistemas multicomponentes. 4.2Sistema líquido- líquido Soluciones ideales. Ley de Raoult. Punto de burbuja y punto de rocío. Destilación fraccionada. Disoluciones líquidas no ideales de dos componentes. 4.3Sistemas líquido-gas Ley de Henry	Relaciona el comportamiento de equilibrio de las soluciones generalizando la ley de Henry, la ley de Raoult y el concepto de actividad en lugar de concentración. Calcula los cambios en las propiedades de las disoluciones en función de la cantidad de partículas de soluto y disolvente.	Exposición por estudiante Exposiciones del profesor Práctica de laboratorio Resolución de problemas	Exámenes escritos Problemario Registro de procedimientos, observaciones y resultados de prácticas de laboratorio en bitácora. Reportes Orales Plataforma Exposiciones

química,	Dependencia de la		Cuestionarios
electroquímica.	solubilidad con la		
termodinámica,	temperatura y la presión.		
	4.4Sistemas líquido-		
	sólido		
superficies) para	Solubilidad		
entender las	Propiedades Coligativas		
propiedades de la			
materia a nivel			
atómico, iónico y			
molecular en			
procesos físicos,			
químicos y			
biológicos de			
forma ética y con			
responsabilidad			
social y ambiental.			

LABORATORIO

PRÁCTICA	DOMINIO PROCEDIMENTAL	OBJETIVO DE LA PRÁCTICA	TIPO DE PRÁCTICA	EVIDENCIAS DE DESEMPEÑO
Calor de Reacción (Ley de Hess)	Capacidad para aplicación	Determinar el calor de reacción de la neutralización del NaOH y el HCl, por medio de la Ley de Hess.	Tipo 2: Cerrado	Reporte científico Exposición oral de resultados y conclusiones Bitácora
Calor de Vaporización	Capacidad para aplicación de la termodinámica y transmisión de calor.	Determinar el calor latente de vaporización del agua a 100°C y 1 atm de presión.	Tipo 2: Cerrado	Reporte científico Exposición oral de resultados y conclusiones Bitácora
Aspectos Cualitativos del Equilibrio Químico	Capacidad para aplicar los principios de conocimientos básicos de la química básica, química orgánica e	Experimentar con el principio de Le Chatelier y determinar si es posible el reactivo o producto limitante en la reacción.	Tipo 2: Cerrado	Reporte científico Exposición oral de resultados y conclusiones

	inorgánica y sus aplicaciones en la ingeniería.			Bitácora		
Grado de Avance en una Reacción Química	Capacidad para aplicar los principios de conocimientos básicos de la química básica, química orgánica e inorgánica y sus aplicaciones en la ingeniería.	principios de estequiométricas de los reactivos que se requieren para producir una determinada cantidad de productos. inorgánica y sus aplicaciones en la				
Determinación del Cociente de Reacción	Capacidad para aplicar los principios de conocimientos básicos de la química básica, química orgánica e inorgánica y sus aplicaciones en la ingeniería.	Determinar en forma experimental el cociente de reacción iniciando con 3 cantidades distintas de reactivos y productos.	Tipo 2: Cerrado	Reporte científico Exposición oral de resultados y conclusiones Bitácora		
Entalpia de Sublimación del Iodo	Capacidad para aplicación de la termodinámica y transmisión de calor.	Determinar el cambio de entalpia para la sublimación de Iodo molecular a partir del cálculo experimental de la presión de vapor y de valores estándar de entropía. □ Comprender los principios de la espectrofotometría como herramienta de análisis químico cuantitativo. Determina el grado de avance en una reacción química.	Tipo 2: Cerrado	Reporte científico Exposición oral de resultados y conclusiones Bitácora		
Presión de Vapor	Capacidad para aplicación de la termodinámica y transmisión de calor.	Determinar la presión de vapor del agua.	Tipo 2: Cerrado	Reporte científico Exposición oral de resultados y conclusiones Bitácora		

FUENTES DE INFORMACIÓN	EVALUACIÓN DE LOS APRENDIZAJES
(Bibliografía, direcciones electrónicas)	(Criterios, ponderación e instrumentos)

- J. M. Smith H. C. Van Ness M.M. Abbott. Introducción a la Termodinámica en Evaluación por parte del maestro y en el caso de las exposiciones se puede Ingeniería Ouímica. 7ma ed. Mc Graw Hill. México.
- Laidler, K.J. Meiser, FISICOQUÍMICA. CECSA, 5ta. Ed. (2003) Dentro de la cual se pueden incluir algunas de las siguientes México.
- Hill. 5ta Ed. (2004).
- Castellan, G.W. FISICOQUÍMICA. Fondo -Examen Educativo. 2da. Ed. (1996).
- Ball D. W. FISICOQUÍMICA. Ed. Thomson. Plataforma 1era. Ed. (2004) México.
- Engel, T. y Reid, INTRODUCCION A LA FISICOOUIMICA: **TERMODINAMICA** Pearson Educacion, Primera Edición, (2007) Laboratorio 30% México.
- Chang, R. FISICOQUÍMICA. España: McG políticas de evaluación al inicio del semestre. raw-Hill Interamericana de España S.L. (2008)

Los libros que se encuentran en biblioteca son suficientes para el desarrollo de las actividades, por lo que, no es necesaria la adquisición de bibliografía más reciente.

ESTRATEGIAS

aplicar una coevaluación

INSTRUMENTOS

J.H. Teoría 70%

actividades en diversos porcentajes, los cuales serán definidos Levine, I.N., FISICOQUÍMICA, Mc Graw por el maestro en las políticas de evaluación al inicio del semestre.

Problemario

Exposiciones

Cuestionarios

Dentro del cual se pueden incluir diferentes formas de evaluación, las cuales serán definidas por el maestro en las

Reporte científico Exposición Oral Bitácora

CRONOGRAMA DEL AVANCE PROGRAMÁTICO

Objetos de Estudio		Semanas														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
OBJETO DE ESTUDIO 1	X	X	X	X												
OBJETO DE ESTUDIO 2					X	X	X	X								
OBJETO DE ESTUDIO 3									X	X	X	X				
OBJETO DE ESTUDIO 4:													X	X	X	X