UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

UNIDAD ACADÉMICA:

FACULTAD DE CIENCIAS QUÍMICAS

PROGRAMA DEL CURSO:

CATÁLISIS INDUSTRIAL

DES:	Ingeniería y Ciencias					
Programa(s) académico(s)	Quimico					
Tipo de Materia: Obligatoria / Optativa	Obligatoria					
Clave de la Materia:	QUE813					
Semestre:	Octavo					
Área en plan de estudios (B,P,E,O):	Específica					
Total de horas por semana:	6					
h./semana trabajo presencial/virtual:	3					
h./semana laboratorio/taller:	3					
h./trabajo extra-clase:	0					
Total de horas por semestre: Total de horas semana por 16 semanas	96					
Créditos totales:	6					
Fecha de actualización:	Febrero 2024					
Responsable(s) del diseño del programa del curso:	Dr. Gerardo Zaragoza Galán Dr. Eduardo Valente Gómez Benítez					
Prerrequisito (s):	QUE612					

DESCRIPCIÓN DE LA UNIDAD DE APRENDIZAJE/CURSO:

El alumno podrá comprender los distintos fenómenos que involucran la catálisis de reacciones químicas, a través del conocimiento de los principios básicos de las diferentes técnicas de caracterización de materiales catalíticos, así como mediante el tipo de información que proporciona cada técnica con respecto a la actividad y selectividad catalíticas. El estudiante relacionará las diferentes metodologías que existen para sintetizar un catalizador con las propiedades obtenidas de dicho material. El estudiante deberá distinguir los conceptos de cinética química que intervienen durante el fenómeno catalítico en una reacción, asociándolo con la forma de evaluar la actividad catalítica y la selectividad.

COMPETENCIA PRINCIPAL QUE DESARROLLA:

DB.1 CIENCIAS QUÍMICAS

Evalúa los conocimientos químicos en explicar, sintetizar, modificar, caracterizar y resolver problemas relacionados con el comportamiento y cambios de compuestos inorgánicos y materiales en diversas aplicaciones desde una perspectiva ética y sostenible.

OTRAS COMPETENCIAS A LAS QUE SE CONTRIBUYE CON EL DESARROLLO DE LA UNIDAD DE APRENDIZAJE/CURSO:

PI3. INVESTIGACIÓN EN CIENCIAS E INGENIERÍA

Evalúa los conocimientos químicos en explicar, sintetizar, modificar, caracterizar y resolver problemas relacionados con el comportamiento y cambios de compuestos inorgánicos y materiales en diversas aplicaciones desde una perspectiva ética y sostenible.

B1. EXCELENCIA Y DESARROLLO HUMANO

La excelencia educativa promueve el desarrollo humano integral con resultados tangibles obtenidos en la formación de profesionales con conciencia ética y solidaria, pensamiento crítico y creativo, así como una capacidad innovadora, productiva y emprendedora. Se puntualiza en los aprendizajes, como referente para construir nuevas propuestas y soluciones en el marco de la innovación y pertinencia social, con matices éticos y de valores, que desde su particularidad cultural le permitan respetar la diversidad, promover la inclusión, valorar la interculturalidad.

DOMINIOS (Se toman de las competencias)	OBJETOS DE ESTUDIO (Contenidos necesarios para desarrollar cada uno de los dominios, temas y subtemas)	RESULTADOS DE APRENDIZAJE (Se plantean de los dominios y contenidos)	METODOLOGÍA (Estrategias, secuencias, recursos didácticos)	EVIDENCIAS DE DESEMPEÑO (Productos tangibles que permiten valorar los resultados de aprendizaje)
ciencias o ingeniería para elaborar estrategias que permitan plantear posibles soluciones a problemas complejos del campo profesional en el desarrollo sostenible. B1.1 Desarrolla el pensamiento crítico a partir de la libertad, el análisis, la reflexión y la argumentación.	INDUSTRIA QUÍMICA A NIVEL GLOBAL Y EN MÉXICO 1.1 Subsectores de la industria: Químicos básicos (polímeros, petroquímicos de base, químicos inorgánicos y fertilizantes), químicos de especialidad (electrónicos, gases industriales, adhesivos, etc), agroquímicos, farmaceúticos, productos	Identifica los diferentes subsectores de la industria química y su importancia en el desarrollo nacional y global.		Exámenes escritos
P1.1 Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad.	fundamentales: Catálisis, Energía de activación, Catálisis Homogénea y heterogénea, Catálisis positiva y negativa, autocatálisis, envenenamiento. 3.2 Actividad (TON, TOF), Selectividad		Exposiciones del profesor	Problemas Exámenes escritos

B1.1 Desarrolla el pensamiento crítico a partir de la libertad, el análisis, la reflexión y la argumentación.	enantioselectividad) y Estabilidad. 3.3 Catálisis y química verde: Química verde y sostenible, los doce principios de la química verde, economía atómica, factor E, índice de inocuidad.			
fundamentos químicos que rigen la formación de enlaces en estructuras metal- orgánicas y los relaciona con sus propiedades, estructura, aplicaciones y fenómenos biológicos. E2.4 Interpreta distintos fenómenos en reacciones catalizadas en fase homogénea o heterogénea, y los relaciona con las diferentes	compuestos organometálicos a. Conceptos básicos de química organometálica: ligandos orgánicos más comunes, hapticidad, reacciones de química organometálica. b. Ciclos catalíticos c. Ciclos catalíticos importantes: Hidroformilación, Proceso Monsanto en la síntesis del ácido acético, Metátesis de olefinas, Proceso Fischer- Tropsch, Proceso Ziegler- Natta, Reacción de Heck, Reacción de Suzuki, Reacción de Sonogashira, etc.	Describe mecanismos de reacción basado en reacciones organometálicas simples.	Exposición por estudiante	Exposición
E2.1 Comprende los fundamentos químicos que rigen la formación de enlaces		Identifica las ventajas y desventajas de la catálisis		Ensayo
orgánicas y los relaciona con sus		catálisis heterogénea.	en grupos	

	1			
estructura,	mesoporosos y			
aplicaciones y	macroporosos.			
fenómenos	4.3 Factores electrónicos:			
biológicos.	Catalizadores redox,			
	Catalizadores iónicos			
E2.4 Interpreta	(ácido/base),			
	Catalizadores metálicos y			
	bimetálicos,			
catalizadas en fase				
	4.4 Producción de			
heterogénea, y los				
	Inmobilización de			
diferentes	catalizadores			
	heterogéneos.			
existen para sintetizar				
un catalizador con las				
-	caracterización de			
,	catalizadores sólidos:			
selectividad	Difracción de rayos X,			
•	Espectroscopia			
pueden	fotoelectrónica de rayos X,			
	Espectroscopia de			
B1.1 Desarrolla el	infrarrojo, espectroscopia			
pensamiento crítico a	Raman, Microscopia			
	electrónica de transmisión,			
•	Microscopia electrónica de			
la argumentación.	barrido, etc.			
la argamoniación	4.7 Algunos procesos			
	industriales de			
	importancia: Síntesis de			
	amoniaco, producción de			
	ácido sulfúrico, síntesis de			
	estireno, producción de			
	cloruro de vinilo,			
	polimerización de eteno,			
	etc.			
E2.1 Comprende los		Compara		
fundamentos	BIOCATÁLISIS			
químicos que rigen la	5.1 Enzimas y sitios	Compara la biocatálisis con		
formación de enlaces	activos	la catálisis mediada por		
en estructuras metal-		metales.	D'an alla all'illa	
	5.3 Procesos industriales		Búsqueda y análisis	Ensayo
	biocatalíticos		de información	
propiedades,				
estructura,				
aplicaciones y				
fenómenos			Análisis y discusión	
biológicos.			en grupos	
biologicos.				
E2.4 Interpreta				
•				
distintos fenómenos				
en reacciones				
catalizadas en fase				
homogénea o				
heterogénea, y los				
relaciona con las				
diferentes				

metodologías que
existen para sintetizar
un catalizador con las
propiedades de
reactividad y
selectividad
deseadas que
pueden
D. () D
B1.1 Desarrolla e
pensamiento crítico a
partir de la libertad, e
análisis, la reflexión y
la argumentación.

.

LABORATORIO

PRÁCTICA (Nombre de la práctica)	DOMINIO PROCEDIMENTAL	OBJETIVO DE LA PRÁCTICA	TIPO DE PRÁCTICA	EVIDENCIAS DE DESEMPEÑO (Productos tangibles que permiten valorar los resultados de la práctica)
Síntesis de complejo de NiCl ₂ (PPh ₃) ₂	Habilidad para llevar a cabo procedimientos estándares de laboratorio implicados en trabajos analíticos y sintéticos, en relación con sistemas orgánicos e inorgánicos.	Sintetizar complejos de Ni(II) con trifenilfosfina	Tipo 2: Cerrada	Reporte científico
Síntesis del compuesto 2,4,6- triariloxi-1,3,5-triazina	Habilidad para llevar a cabo procedimientos estándares de laboratorio implicados en trabajos analíticos y sintéticos, en relación con sistemas orgánicos e inorgánicos.	Obtener el compuesto derivado de tricloruro de triazina en una reacción simple	Tipo 2: Cerrada	Reporte científico
Acoplamientos C-C con activación C-O	Habilidad para llevar a cabo procedimientos estándares de laboratorio implicados en trabajos analíticos y sintéticos, en relación con sistemas orgánicos e inorgánicos.	Llevar a cabo la activación de un enlace C-O y verificar que exista un acoplamiento C-C.	Tipo 3: Semiabierta o Semicerrada	Reporte científico
Acoplamientos C-N con activación C-O	Habilidad para llevar a cabo procedimientos estándares de laboratorio implicados en trabajos analíticos y sintéticos, en relación con	Llevar a cabo la activación de un enlace C-O y verificar que exista un acoplamiento C-N.	Tipo 3: Semiabierta o Semicerrada	Reporte científico

	sistemas orgánicos e inorgánicos.			
Obtención de solketal catalizada por Fe	Habilidad para llevar a cabo procedimientos estándares de laboratorio implicados en trabajos analíticos y sintéticos, en relación con sistemas orgánicos e inorgánicos.	Obtener un producto de	Tipo 3: Semiabierta o Semicerrada	Reporte científico

FUENTES DE INFORMACIÓN (Bibliografía, direcciones electrónicas)	EVALUACIÓN DE LOS APRENDIZAJES (Criterios, ponderación e instrumentos)
1.Hagen, J. 2006, Industrial Catalysis: A Practical	Instrumentos de Evaluación
Approach, Second Edition. WILEY-VCH Verlag GmbH & Co.	- Exposición: Realizará una presentación oral utilizando recursos digitales o multimedia (power point, geneally, canva, etc) en donde
GIIDIT & CO.	se le evaluará:
2. Niemantsverdriet ,J. W. 2003 Concepts of Modern	Tiempo efectivo de exposición
Catalysis and Kinetics. I. Chorkendorff, WILEY-VCH	Estructura de la presentación
Verlag GmbH & Co. KGaA,	Contenido
	Expresión Oral
2 Aquillar Díag C Cabriel 2002 Fundamentos de	Domino del tema
3. Aguilar Ríos, G Gabriel 2003 Fundamentos de catálisis. México Alfa Omega.	Exámenes: Se realizarán exámenes de conceptos teóricos.
	Trabajo escrito: Se evaluará la estructura, el contenido y que las referencias sean actuales.
	Dondovskión
	Ponderación Teoría
	Exámenes 33%
	Exposiciones 33%
	Trabajo escrito 33%
	Laboratorio
	Reportes 80%
	Trabajo de laboratorio 20%
	Global
	Teoría 70%
	Laboratorio 30%

CRONOGRAMA DEL AVANCE PROGRAMÁTICO

Objetos de Estudio		Semanas														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
OBJETO 1. LA INDUSTRIA QUÍMICA A NIVEL GLOBAL Y EN MÉXICO																

OBJETO 2. INTRODUCCIÓN A LA CATÁLISIS								
OBJETO 3. CATÁLISIS HOMOGÉNEA								
OBJETO 4. CATÁLISIS HETEROGÉNEA								
OBJETO 5. BIOCATÁLISIS								