UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

UNIDAD ACADÉMICA: FACULTAD DE INGENIERÍA

PROGRAMA ANALÍTICO DE LA UNIDAD DE APRENDIZAJE:

AUTOMATIZACIÓN ROBÓTICA

DES:	Ingeniería					
	Ingeniería Aeroespacial,					
Programa académico	Ingeniería en Procesos					
	Industriales.					
Tipo de materia (Obli/Opta):	Obligatoria					
Clave de la materia:	MC511					
Semestre:	Séptimo					
Área en plan de estudios:	Específica					
Total de horas por semana:	4					
Teoría: Presencial o Virtual	0					
Laboratorio o Taller:	4					
Prácticas:	0					
Trabajo extra-clase:	0					
Créditos Totales:	4					
Total de horas semestre (x	64					
sem):	04					
Fecha de actualización:	Febrero 2024					
Prerrequisito (s):	N/A					

DESCRIPCIÓN:

Los ingenieros deben de contar con las herramientas necesarias para poder describir el funcionamiento de las máquinas involucradas en los procesos de producción, en este curso el alumno conocerá y será capaz de aplicar la tecnología (dispositivos, herramientas y software) propios de un sistema de automatización.

Describir el uso, funcionamiento, instalación o desarrollo de sistemas automatizados.

Será capaz de analizar e implementar sistemas de control y automatización industrial.

COMPETENCIAS PARA DESARROLLAR:

E3. Sistemas de manufactura

Desarrollar las habilidades necesarias para diseñar, implementar y optimizar sistemas de manufactura eficientes y eficaces en entornos industriales. Esta competencia abarca desde la selección y diseño de procesos de producción hasta la gestión de la calidad y mejora continua en la fabricación de productos.

E2. Producción y manufactura aeroespacial: Gestiona las competencias necesarias para participar en los procesos de producción y fabricación de componentes aeroespaciales. Comprende los aspectos prácticos y operativos de la fabricación, asegurando la eficiencia, calidad y seguridad en la producción de aeronaves y vehículos espaciales.

Básicas:

B4. Transformación Digital

Transforma la cultura digital en la sociedad, en las organizaciones e instituciones educativas para aprovechar al máximo el potencial de las tecnologías y herramientas digitales; propiciar su uso responsable y ético que estimule la creatividad, innovación, la comunicación efectiva y el trabajo colaborativo e interdisciplinar en la solución de problemas de la sociedad digital; promoviendo la privacidad y la seguridad, así como el respeto a los derechos de autor y la propiedad intelectual.

DOMINIOS (Se toman de las competencias	OBJETOS DE ESTUDIO (Contenidos necesarios para desarrollar cada uno de los dominios)	RESULTADOS DE APRENDIZAJE (Se plantean de los dominios y contenidos)	METODOLOGÍA (Estrategias, secuencias, recursos didácticos)	EVIDENCIAS (Productos tangibles que permiten valorar los resultados de aprendizaje)
B4.2 Utiliza de forma responsable las tecnologías de la información, comunicación, conocimiento y aprendizaje (TICCA), en el proceso de construcción de saberes y	control industrial 1.1. Definición de automatización y control. 1.2. Historia de los controles automáticos 1.3. Tipos de controles automáticos automáticos y controles automáticos industriales.		Trabajo colaborativo	Mapa mental de la historia de la automatización
construcción de saberes y el desarrollo de proyectos sociales innovadores en el ámbito digital. Automatizació n y Control: Integración de tecnologías de automatizació n y sistemas de control para mejorar industriales. 2. Fundamentos de ingeniería eléctrica 2.1. Corriente directa, continua, ley de ohm 2.2. Relevadores y contactores 2.3. Relevadores de temporización 2.4. Unidades de alimentación 2.5. Uso de multimetro Representación esquemática de circuitos	Distingue la aplicación de los fenómenos físicos en dispositivos eléctricos. Reconoce los diferentes diagramas utilizados en los circuitos de control	Ejercicios, demostraciones y simulaciones situadas ABP.	Informe del análisis de caso de y/o prácticas de laboratorio	
la eficiencia y precisión en los procesos de manufactura, reduciendo los errores y aumentando la velocidad de producción. Participación		Distingue las diferencias en los detectores utilizados en la industria.	Ejercicios, demostraciones y simulaciones situadas ABP.	Informe del análisis de caso de y/o prácticas de laboratorio

n de sistemas de control y automatizació n en procesos de manufactura, demostrando la mejora en la eficiencia y precisión.				
	4. Sistemas neumáticos /electro neumáticos 4.1. Elementos de generación, tratamiento y consumo del aire comprimido. 4.2. Elementos de mando y accionamiento neumático 4.3. Representación esquemática de instalación de un circuito neumático. Métodos de diseño de un circuito neumático.	Reconoce las partes de un sistema neumático, sus propiedades y aplicación Diseña circuitos neumáticos de control.	Ejercicios, demostraciones y simulaciones situadas ABP.	Informe del análisis de caso de y/o prácticas de laboratorio
	5. Sistemas Hidráulicos /electrohidráulicos 5.1. Elementos de generación, tratamiento y consumo del aire comprimido. 5.2. Elementos de mando y accionamiento hidráulico 5.3. Representación esquemática de instalación de un circuito hidráulico. 5.4. Métodos de diseño de un circuito hidráulico.	Reconoce las partes de un sistema hidráulico, sus propiedades y aplicación. Diseña circuitos hidráulicos de control.	Ejercicios, demostraciones y simulaciones situadas ABP.	Informe del análisis de caso de y/o prácticas de laboratorio
	Fundamentos de la técnica de control	Integra los conocimientos de	Ejercicios, demostraciones y	Informe del análisis de caso

	6.1. Funciones lógicas 6.2. Plc Técnicas básicas de control por plc.	los elementos de un proceso industrial. Implementa sistemas de automatización a problemas industriales.	simulaciones situadas ABP.	de y/o prácticas de laboratorio
E2. D2 Tecnologías Avanzadas: Familiarizarse con las tecnologías de fabricación avanzadas utilizadas en la industria aeroespacial, como la fabricación aditiva (impresión 3D), mecanizado de alta velocidad y automatizació n industrial.	7. Robótica industrial 7.1. Morfología de robots 7.2. Programación de robots	Reconoce las partes de un robot y la forma de programarlos. Establece la programación básica de un robot industrial	Ejercicios, demostraciones y simulaciones situadas ABP.	Informe del análisis de caso de y/o prácticas de laboratorio

FUENTES DE INFORMACIÓN (Bibliografía, direcciones electrónicas)	EVALUACIÓN DE LOS APRENDIZAJES (Criterios, ponderación e instrumentos)
Broadbent, S., Bonner, D. (1992). <i>Neumática</i> . Festo Didactic	Se toma en cuenta para integrar calificaciones parciales: • 3 exámenes parciales,donde se evalúa
Cembranos N. F. J. (2008) Automatismos eléctricos, neumáticos e hidráulicos. Thomson Paraninfo	conocimientos, comprensión y aplicación. Con un valor del 30%, 30% y 40%
Deppert, W., y Stoll, K. (2005). <i>Dispositivos Neumáticos</i> . Alfaomega.	respectivamente. La acreditación del curso se integra: • Exámenes parciales: 20%
Harper, E. (2004). El ABC de la instrumentación en el control de procesos industriales. Limusa.	 Proyectos Especiales: 50% Tareas: 20%.
Millán, S. (1996). Automatización neumática y electro neumática. Norgren.	● Elaboración de proyecto: 10%
Ocker, T., y Zimmermann, A. (1997). <i>Hidráulica: Libro de trabajo.</i> FESTO Didactic.	
Rouff, H. (1993). Electroneumática: sistema para enseñanza de la técnica de mando. Festo Didactic	

- Schrader, B., Merckle, D. (1992). *Hidráulica*. FestoDidactic.
- Roldán Viloria, J. (2001). *Prontuario de neumática industrial electricidad aplicada*. International Thomson. F. Ebel, S. Idler, G. Prede, D. Scholz (2008) *Fundamentos de la Técnica de automatización*. Festo Didactic.
- RoldánViloria, J. (2001). *Prontuario de neumática industrial electricidad aplicada*. International Thomson.
- E. Mandado, J. Acevedo, C. Fernández, J. Armesto. (2009) *Autómatas programables y sistemas de automatización*. Marcombo.
- R. Piedrafita (2004) *Ingeniería de la automatización industrial*. Ra-Ma.
- G. Hernandez (2014) Fundamentos y Planeación de la Manufactura Automatizada. Pearson Educación de México.
- R. Sanchis, J. A. Romero, C. V. Ariño (2010) Automatización Industrial. Publicación de la Universitat Jaume.
- Craig, J. J. (1986). *Introducction to Robotics Mechanics and Control. Ed.* Addison Wesley Publishing Company.
- P.Coiffet / M. Chirouze (1986). *Elementos de Robótica*. Ed. Colección Ciencia y Electrónica
- Stadler, W. (1995). *Analitical Robotics and Mechatronics*. Ed.Mc. Graw Hill.
- JA.Ollero (2001). Robótica: manipuladores y robots móviles. Marcombo.
- Groover Mikell P., W. M. (1995). *Robótica Industrial: Tecnología, programación y aplicaciones.* Ed. Mc Graw Hill.
- Fu, K. S. (1987). Robótica: Control, Detección, Visión e Inteligencia. McGraw Hill.
- Barrientos, e. (1997). *Fundamentos de robótica*.McGraw Hill.
- Spong, M. V. (1989). *Robot Dynamics and control.* John Wiley & Sons.
- Shahinpoor, M. (1987). *A robot Engineering Textbook*. Harper&Row.
- Stadler, W. (1995). *Analitical Robotics and Mechatronics*. Mc. Graw Hill.

Koren, Y. (1987). <i>ROBOTICS for engineers</i> . McGraw Hill International	
Safford, E. (1982). <i>Handbook of Advanced Robotics</i> .TAB BOOKS inc.	

CRONOGRAMA

Objetos de estudio	Semanas															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Introducción a la automatización y																
control industrial																
Fundamentos de ingeniería electrica																
Detectores																
Sistemas neumáticos /electro neumáticos																
Sistemas Hidráulicos /electrohidráulicos																
Fundamentos de la																
técnica de control																
Robótica industrial																