UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

UNIDAD ACADÉMICA: FACULTAD DE INGENIERÍA

PROGRAMA ANALÍTICO DE LA UNIDAD DE APRENDIZAJE:

ÓPTICA GEOMÉTRICA

DES:	Ingeniería							
Programa académico	Ingeniería Física							
Tipo de materia (Obli/Opta):	Obligatoria							
Clave de la materia:	FI402							
Semestre:	4							
Área en plan de estudios:	Ciencia Básica							
Total de horas por semana:	5							
Teoría: Presencial o Virtual	4							
Laboratorio o Taller:	4							
Prácticas:	0							
Trabajo extra-clase:	0							
Créditos Totales:	2							
Total de horas semestre (x sem):	64							
Fecha de actualización:	Octubre 2024							
Prerrequisito (s):	BI305 Electricidad y Magnetismo							

DESCRIPCIÓN:

La luz como objeto de estudio ha sido de interés desde tiempos antiguos. Las interacciones de la luz con diferentes fenómenos responden a preguntas tan mundanas como ¿Por qué el cielo es azul? ó ¿Cómo puedo lograr observar lo ínfimamente pequeño o lo sumamente alejado? pero también otras muy complejas como ¿Dónde es conveniente colocar un arreglo de radiotelescopios para hacer más eficiente la detección?

En Óptica Geométrica, abordarás de forma introductoria y fenomenológica los principios físicos bajo los que se rige la luz desde su punto de vista geométrico y su punto de vista ondulatorio, aplicado al diseño de instrumentos ópticos

COMPETENCIAS PARA DESARROLLAR:

P1. CIENCIAS E INGENIERÍA.

Aplica los conocimientos y metodologías para el planteamiento y resolución de problemas complejos de las ciencias naturales y de la ingeniería, para la toma de decisiones en un contexto de responsabilidad social y del medio ambiente.

B3. Responsabilidad Social

Asume con responsabilidad y liderazgo social los problemas más sensibles de las comunidades cercanas ante su propio contexto, con el propósito de contribuir a la conformación de una sociedad más justa, libre, incluyente y pacífica, así como al desarrollo sostenible y al cuidado del medio ambiente, en el ámbito local, regional y nacional; y a la preservación, enriquecimiento y difusión de los bienes y valores de las diversas culturas y con la internacionalización solidaria.

DOMINIOS (Se toman de las competencias)	OBJETOS DE ESTUDIO (Contenidos necesarios para desarrollar cada uno de los dominios)	RESULTADOS DE APRENDIZAJE (Se plantean de los dominios y contenidos)	METODOLOGÍA (Estrategias, secuencias, recursos didácticos)	EVIDENCIAS (Productos tangibles que permiten valorar los resultados de aprendizaje)
pasamiento lógico para plantear propuestas de solución a problemas complejos de interés para las ciencias e ingeniería a través del uso de tecnologías de información fomentando la creatividad e innovación en un trabajo interdisciplinario . B3.4 Combate a la ignorancia, la pseudociencia y	1. LUZ: NATURALEZA Y PROPAGACIÓN 1.1. Naturaleza de la Luz. 1.2. Reflexión y Refracción. 1.3. Reflexión Interna Total. 1.4. Dispersión. 1.5. Polarización. 1.6. Principio de Huygens. 1.7. Principio de Fermat.	Aprende a representar una señal periódica como una suma infinita de senos y cosenos, y las condiciones necesarias para hacerlo. Describe los conceptos de ondas, frentes de onda y haces de luz. Describe y calcula la reflexión y la refracción de la luz. Describe la reflexión interna total. Describe cualitativa y cuantitativamente la dispersión y la polarización de la luz. Describe cualitativa y cuantitativamente el principio de Huygens y el de Fermat	Exposición del profesor Técnicas: -Integrar un portafolio de evidencias, con ejercicios resueltos.	Resumen de los temas del objeto de estudio. Portafolio de evidencias con problemas resueltos y demostraciones con explicaciones claras y formales.
todos aquellos prejuicios que obstaculizan la transformación de la sociedad	2. ÓPTICA GEOMÉTRICA E INSTRUMENTOS ÓPTICOS 2.1. Reflexión y Refracción en una Superficie Plana. 2.2. Reflexión en una Superficie Esférica 2.3 Refracción en una Superficie Esférica 2.4. Lentes Delgadas. 2.5. Instrumentos Ópticos: 2.6. La cámara fotográfica. 2.7. El ojo humano. 2.8. Lupas.	Describe y calcula la refracción en superficies		

2.9. Microscopios y telescopios.	funcionamiento de instrumentos ópticos tales como la cámara fotográfica, el ojo humano, la lupa, el microscopio y el telescopio.	
3. INTERFERENCIA DE LA LUZ 3.1. Interferencia y Fuentes Coherentes. 3.2. Interferencia de la Luz de Dos Fuentes. 3.3. Intensidad en los Patrones de Interferencia. 3.4. Interferencia en Películas Delgadas. 3.5. El Interferómetro de Michelson.	Describe el fenómeno de la interferencia. Describe cualitativa y cuantitativamente la interferencia de dos fuentes. Describe cualitativa y cuantitativamente la interferencia en películas delgadas. Describe el interferómetro de Michelson	
4. DIFRACCIÓN Y POLARIZACIÓN 4.1. Difracción de Fresnel y de Fraunhofer. 4.2. Difracción desde una Ranura. 4.3. Intensidad en el Patrón de una Ranura. 4.4. Ranuras Múltiples. 4.5. Rejilla de Difracción. 4.6. Difracción de Rayos X. 4.7. Aperturas Circulares y Resolución. 4.8. Holografía. 4.9. Polarización de la Luz.	Describe los patrones de difracción de Fresnel y de Fraunhofer. Describe cualitativa y cuantitativamente la difracción de una ranura, de ranuras múltiples, de rejilla, de rayos X y de aperturas circulares. Describe el fenómeno de la holografía. Describe el fenómeno de la fenómeno de la	

FUENTES DE INFORMACIÓN (Bibliografía, direcciones electrónicas)	EVALUACIÓN DE LOS APRENDIZAJES (Criterios, ponderación e instrumentos)							
Freedman, R. (2011) Física universitaria con física moderna Vol. 2. Addison Wesley Serway, R. A. (2015). Física para ciencias e ingeniería	La calificación final se pondera de acuerdo a los tres parciales indicados por la unidad académica, parcial uno 30%, parcial dos 30% y tercer parcial 40%. Cada parcial se califica con el 100% de trabajos entregados y/o exposiciones (según							

P. Fishbane, S. Gasiorowicz, S. Thornton. (2000) Física para ciencias e ingeniería Vol 2. Prentice-Hall Hecht, E. (2012). Optics. Pearson Education India.

Instrumentos

Lista de cotejo para evaluar el resumen. Rúbrica de Autoevaluación, Rúbrica para evaluar los ejercicios Rúbrica de coevaluación Rúbrica para el reporte de resultados

Elementos a considerar para integrar la calificación y su ponderación.

Resumen de Temas, lista de cotejo para evaluar el resumen, 10%
Portafolio de evidencias, rúbrica para evaluar los ejercicios, 40%
Reporte de resultados, rúbrica para evaluar el reporte, 30%
Auto-evaluación 10%
coevaluación 10%

CRONOGRAMA

Objetos de estudio	Semanas															
	1	2	3	4	5	6	7	8	9	10	1	1	13	14	15	16
											1	2				
1. Luz: naturaleza y																
propagación																
2. Óptica geométrica e																
instrumentos ópticos																
3. Interferencia de la luz																
4. Difracción y																
polarización																