UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

UNIDAD ACADÉMICA: FACULTAD DE INGENIERÍA

PROGRAMA ANALÍTICO DE LA UNIDAD DE APRENDIZAJE:

TERMODINÁMICA

DES:	Ingeniería
Programa académico	Ingeniería Física
Tipo de materia (Obli/Opta):	Obligatoria
Clave de la materia:	FI501
Semestre:	Sexto
Área en plan de estudios:	
Total de horas por semana:	5
Teoría: Presencial o Virtual	PRESENCIAL
Laboratorio o Taller:	4
Prácticas:	1
Trabajo extra-clase:	0
Créditos Totales:	5
Total de horas semestre (x	80
sem):	
Fecha de actualización:	20/02/2024
Prerrequisito (s):	Fisicoquímica

DESCRIPCIÓN: Al finalizar el curso, los estudiantes han desarrollado los conceptos básicos de la estructura e interacciones térmicas y la materia, así como las leyes que rigen el comportamiento de la energía calorífica y sus procesos de transferencia, y así incorporar procesos e interacciones térmicas la solución de problemas de ingeniería y ciencias básicas. Al final del curso el estudiante será capaz de:

- Identifica los procesos en los que interviene el calor y la energía calorífica.
- Discute los principios básicos en los que se fundamente las leyes de la termodinámica.
- Deduce las leyes de la termodinámica y las aplica en la resolución de problemas en ingeniería.
- Analiza distintos procesos termodinámicos ejemplificados por los ciclos termodinámicos.
- Identifica los problemas relacionados con los fenómenos de transporte en termodinámica y aplica los conceptos adquiridos en el problema de mezclas.
- Generaliza los principios termodinámicos clásicos al deducir y aplicar la teoría estadística de la termodinámica.

COMPETENCIAS PARA DESARROLLAR:

IFF. Interpretación De Fenómenos Físicos: Evalúa soluciones a problemas concretos y abstractos en ciencias e ingeniería, aplicando los principios fundamentales de la física para su modelado y resolución. Utiliza herramientas analíticas y numéricas.

B5. INNOVACIÓN Y EMPRENDIMIENTO SOCIAL

Construye de forma colaborativa con actores académicos y no académicos, proyectos innovadores de emprendimiento social considerando los avances científicos y tecnológicos para la transformación de la sociedad; mediante la habilitación de redes y comunidades de práctica que posibiliten el diálogo abierto, la pluralidad epistémica, la participación, la realimentación y, la construcción de conocimiento, con valores de solidaridad, justicia, equidad, sostenibilidad, interculturalidad, democracia y derechos humanos.

DOMINIOS	OBJETOS DE ESTUDIO	RESULTADO	METODOLOGÍA	EVIDENCIAS			
(Se toman de	(Contenidos necesarios para	S DE	(Estrategias,	(Productos			

las	desarrollar cada uno de los	APRENDIZAJ	cocuoncias	tangibles que
competencias)	dominios)	E (Se plantean de los dominios y contenidos)	secuencias, recursos didácticos)	permiten valorar los resultados de aprendizaje)
IFF2 Identifica la relación que existe entre física y otras áreas del conocimiento, para determinar las propiedades macroscópicas y microscópicas de la materia, y sus usos en ingeniería. IFF3 Analiza fenómenos de relevancia actual en ciencias e ingeniería, empleando conceptos y herramientas pertinentes para el estudio y solución de problemas vigentes de física contemporánea	1.INTRODUCCIÓN 1.1. Sistemas Termodinámicos. 1.2. Definición y Unidades de Trabajo y Calor. 1.3. Transferencia de Energía como Trabajo y Calor. 1.4. La Sustancia Pura. 1.4.1. Equilibrio de fases en una sustancia pura. 1.4.2. Ecuaciones de estado para la fase de vapor de una sustancia compresible simple. 1.4.3. Tablas de propiedades termodinámicas.	Determina las propiedades termodinámicas del agua, utilizando las tablas de agua saturada, vapor sobrecalentado y agua líquida comprimida.	Discusión y análisis de problemas Trabajos en clase y equipo Exposición de profesor ante grupo	Trabajos por escrito Examen Exposición y rúbricas
	2. LA PRIMERA LEY DE LA TERMODINÁMICA 2.1. La Ley Cero de la Termodinámica. 2.2. Diferenciales Exactas e Inexactas. 2.3. La Primera Ley de la Termodinámica. 2.4. Aplicaciones de la Primera Ley.	Analiza, comprende y resuelve problemas relacionados con la presión, las fuerzas hidrostáticas y la flotación y estabilidad en la estática de fluidos.	Discusión y análisis de problemas Trabajos en clase y equipo Exposición de profesor ante grupo	Trabajos por escrito Examen Exposición y rúbricas
B5.5 Participa en proyectos innovadores de protección al medio ambiente y al desarrollo sostenible	3. ANÁLISIS DE MASA Y ENERGÍA DE VOLÚMENES DE CONTROL 3.1. Conservación de la Masa. 3.2. Trabajo de Flujo y Energía de un Fluido en Movimiento. 3.3. Análisis de Energía de Sistemas de Flujo Estable. 3.4. Dispositivos de Ingeniería de Flujo Estable. 3.5. Análisis de Procesos de Flujo Inestable.	Resuelve problemas sobre volúmenes de control, por medio de balances de masa y energía. Identifica los principales dispositivos de ingeniería de flujo estable, mediante sus efectos en los fluidos de trabajo.	Discusión y análisis de problemas Trabajos en clase y equipo Exposición de profesor ante grupo	Trabajos por escrito Examen Exposición y rúbricas
	4. LA SEGUNDA LEY DE LA TERMODINÁMICA (SLT)	Resuelve problemas sobre máquinas	Discusión y análisis de problemas Trabajos en clase y	Trabajos por escrito Examen Exposición y rúbricas

4.1. Introducción. 4.2. Depósitos de Energía Térmica. 4.3. El Ciclo de Carnot. 4.4. Máquinas Térmicas y Eficiencia. 4.5. Refrigeradores y Bombas de Calor, COP. 4.6. La Segunda Ley de la Termodinámica. 4.7. La Desigualdad de Clausius. 4.8. Máquinas de Movimiento Perpetuo 4.9. Procesos Reversibles e Irreversibles. 4.10. Aplicaciones de la Segunda Ley- Procesos Reversibles (Trabajo por PV), Procesos Irreversibles. 5. ENTROPÍA 5.1. Definiciones. 5.2. Procesos Isotérmicos de Transferencia de	térmicas, refrigeradores y bombas de calor, utilizando las ecuaciones para eficiencia y coeficientes de desempeño. Aplica la Segunda Ley de la Termodinámica a sistemas termodinámicos diversos, como son: adiabáticos, isocóricos, isobáricos e isotérmicos Analiza el principio de incremento de entropía. Calcula el valor	equipo Exposición de profesor ante grupo Discusión y análisis de problemas Trabajos en clase y equipo Exposición de profesor ante	Trabajos por escrito Examen Exposición y rúbricas
Calor Internamente Reversibles. 5.3. Cambio de Entropía de Sustancias Puras. 5.4. Procesos Isentrópicos. 5.5. Diagramas de Propiedades que Involucran a la Entropía. 5.6. Las Relaciones T-ds. 5.7. Cambio de Entropía de Líquidos y Sólidos. 5.8. Cambio de Entropía de Gases Ideales.	de la entropía para procesos termodinámicos diversos, que involucran tanto gases ideales como sustancias puras.	grupo	
6. CICLOS TERMODINÁMICOS BÁSICOS 6.1. Ciclos de Potencia de Gas. 6.1.1. El Ciclo de Carnot y su valor en ingeniería. 6.1.2. Máquinas reciprocantes. 6.1.3. Ciclo de Otto. 6.1.4. Ciclo Diesel. 6.1.5. Ciclos Stirling y Ericsson. 6.1.6. Ciclo Brayton y modificaciones. 6.1.7. Ciclos ideales de propulsión por reacción.	Analiza las características principales de los ciclos termodinámicos básicos. Distingue las irreversibilidade s de los ciclos ideales y las asocia con las mejoras	Discusión y análisis de problemas Trabajos en clase y equipo Exposición de profesor ante grupo	Trabajos por escrito Examen Exposición y rúbricas

nrimara lay da cictamac		
primera ley de sistemas		
	İ	
reactivos	İ	

FUENTES DE INFORMACIÓN

(Bibliografía, direcciones electrónicas)

Cengel, Y. a., Boles, ME (2011). *Termodinámica*. McGraw Hill México

García-Colín Scherer, L. (1976). Introducción a la termodinámica clásica.

Linder, B. (2004). Thermodynamics and introductory statistical mechanics. John Wiley & Sons.

EVALUACIÓN DE LOS APRENDIZAJES

(Criterios, ponderación e instrumentos)

Se toma en cuenta para integrar calificaciones parciales:

3 exámenes parciales escritos donde se evalúa conocimientos, comprensión y aplicación. Con un valor del 30%, 30% y 40% respectivamente.

La acreditación del curso se integra:

Exámenes parciales: 65 % Laboratorios y/o prácticas: 15%

Cuestionarios, resúmenes, participación en exposiciones, discusión individual, por

equipo y grupal: 15%

Asistencia: 5%

Nota: para acreditar el curso se deberá tener calificación aprobatoria tanto en la teoría como en las prácticas. La calificación mínima aprobatoria será de 7.0

CRONOGRAMA

Objetos de estudio	Semanas															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1. Introducción																
2. La primera ley de la termodinámica																
3. Análisis de masa y energía de volúmenes de control																
4. La segunda ley de la termodinámica																
5. Entropía																
6. Ciclos termodinámicos básicos																
7. Mezclas de gases																