UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

UNIDAD ACADÉMICA: FACULTAD DE INGENIERÍA

PROGRAMA ANALÍTICO DE LA UNIDAD DE APRENDIZAJE:

FÍSICA MODERNA

DES:	Ingeniería
Programa académico	Ingeniería Física
Tipo de materia (Obli/Opta):	Obligatoria
Clave de la materia:	FI502
Semestre:	5
Área en plan de estudios:	Ciencia Básica
Total de horas por semana:	4
Teoría: Presencial o Virtual	4
Laboratorio o Taller:	0
Prácticas:	0
Trabajo extra-clase:	2
Créditos Totales:	6
Total de horas semestre (x sem):	64
Fecha de actualización:	Febrero 2024
Prerrequisito (s):	Óptica geométrica

DESCRIPCIÓN:

Al finalizar la materia, los alumnos analizan sistemas físicos con herramientas que permiten comprender con mayor detalle sus características. El contenido se aborda de manera que se logra un mayor dominio de física moderna y se establecen nuevas herramientas pertinentes para ingeniería y ciencias. Al final del curso el estudiante será capaz de:

- Resolver problemas sobre la cinemática y la dinámica relativista.
- Describir cualitativa y cuantitativamente los efectos cuánticos de los aspectos de partícula y de onda de la radiación electromagnética.
- Describir cualitativa y cuantitativamente la estructura del átomo de Hidrógeno y de los átomos con múltiples electrones.
- Describir cualitativa y cuantitativamente y resuelve problemas sobre la física molecular y de estado sólido.
- Describir cualitativa y cuantitativamente y resuelve problemas sobre efectos y dispositivos cuánticos.
- Describir cualitativa y cuantitativamente las estructuras nucleares, sus reacciones y dispositivos.
- Describir cualitativa y cuantitativamente la teoría de las partículas elementales

COMPETENCIAS PARA DESARROLLAR:

IFF. Interpretación De Fenómenos Físicos (E)

Evalúa soluciones a problemas concretos y abstractos en ciencias e ingeniería, aplicando los principios fundamentales de la física para su modelado y resolución. Utiliza herramientas analíticas y numéricas.

B3. Responsabilidad Social

Asume con responsabilidad y liderazgo social los problemas más sensibles de las comunidades cercanas ante su propio contexto, con el propósito de contribuir a la conformación de una sociedad más justa, libre, incluyente y pacífica, así como al desarrollo sostenible y al cuidado del medio ambiente, en el ámbito local, regional y nacional; y a la preservación, enriquecimiento y difusión de los bienes y valores de las diversas culturas y con la internacionalización solidaria

DOMINIOS (Se toman de las competencias)	OBJETOS DE ESTUDIO (Contenidos necesarios para desarrollar cada uno de los dominios)	RESULTADOS DE APRENDIZAJE (Se plantean de los dominios y contenidos)	METODOLOGÍA (Estrategias, secuencias, recursos didácticos)	EVIDENCIAS (Productos tangibles que permiten valorar los resultados de aprendizaje)
IFF3. Analiza fenómenos de relevancia actual en ciencias e ingeniería, empleando conceptos y herramientas pertinentes para el estudio y solución de problemas vigentes de física contemporánea. B3.4 Combate a la ignorancia, la pseudociencia y todos aquellos prejuicios que obstaculizan la transformación de la sociedad	1. CONCEPTOS BÁSICOS 1.1. El Principio de Correspondencia. 1.2. Óptica de Rayos y Óptica de Ondas. 1.3. Las Descripciones de Partícula y Onda en Física Clásica. 1.4. Velocidades de Fase y de Grupo 2. CINEMÁTICA RELATIVISTA 2.1. Transformaciones de Galileo. 2.2. Covarianza de Mecánica Clásica bajo Transformaciones Galileanas. 2.3. Fallas de las Transformaciones Galileanas. 2.4. Primer y Segundo Postulado de la Relatividad Especial. 2.5. Transformaciones de Lorentz. 2.6. Las Relaciones de Velocidad relativistas. 2.7. Intervalos de Longitud y de Tiempo en la Física Relativista. 2.8. La Paradoja de los Gemelos. 2.9. Eventos en Espacio- Tiempo y el Cono de luz	Identifica los conceptos básicos de ondas y partículas en Física Clásica con sustento a la Física Moderna. Distingue distintas transformaciones y relaciones de velocidad en los límites de la física no relativista y relativista usando conocimiento de cinemática.	Exposición del profesor Trabajo colaborativo Técnicas: - Integrar un portafolio de evidencias, con ejercicios resueltos de forma colaborativa Exposición de ejercicios a la clase.	Resumen de los temas del objeto de estudio Portafolio de evidencias con problemas resueltos y demostraciones con explicaciones claras y formales. Exposiciones donde se demuestre el uso de los objetos de estudio
	3. DINÁMICA RELATIVISTA: MOMENTO Y ENERGÍA 3.1. Momento Relativista. 3.2. Energía Relativista. 3.3. Equivalencia de Masa y Energía y Sistemas Fronterizados. 3.4. Cuadri-Vector de Energía-Momento. 3.5. Relatividad Especial y la Interacción Electromagnética.	Maneja y práctica los conceptos de dinámica relativista empleando álgebra lineal y vectores.		

3.6. Cálculos y Unidades en Mecánica Relativista	
4. LOS ASPECTOS DE PARTÍCULA DE LA RADIACIÓN ELECTROMAGNÉTICA 4.1. Cuantización en Física Clásica. 4.2. El Efecto Fotoeléctrico. 4.3. Producción de Rayos-x 4.4. El Efecto Compton. 4.5. Producción y Aniquilación de Pares. 4.6. Interacciones Fotón-Electrón. 4.7. Absorción de Fotones.	Analiza los conceptos de partícula y radiación electromagnética mediante la cuantización en física clásica.
5. PROPIEDADES ONDULATORIAS DE LAS OEM's 5.1. Ondas de De-Broglie. 5.2. La ley de Bragg. 5.3. Rayos-x y Difracción Electrónica. 5.4. El Principio de Complementariedad. 5.5. Interpretación Probabilística de las Ondas de De-Broglie. 5.6. El Principio de Incertidumbre. 5.7. Paquetes de Onda y la Velocidad de Onda de De-Broglie. 5.8. Descripción Cuántica de una Partícula Confinada. 5.9. La Ecuación de	Describe las ondas electromagnéticas y proporciona interpretaciones de sus condiciones de frontera. Enuncia las propiedades de las ondas de De-Broglie
Schrodinger. 6. LA ESTRUCTURA DEL ÁTOMO DE HIDRÓGENO 6.1. Dispersión de Partículas. 6.2. El Modelo Planetario Clásico. 6.3. El Espectro del Hidrógeno. 6.4. La Teoría de Bohr del Hidrógeno. 6.5. Éxitos y Fallas de la Teoría de Bohr. 6.6. El Átomo de Hidrógeno y sus Funciones de Onda de la Ecuación de	Explica la estructura del átomo de hidrógeno y átomos con múltiples electrones usando la cuantización.

Explica la estructura del átomo de hidrógeno y átomos con múltiples electrones usando la cuantización.	
del átomo de hidrógeno y átomos con múltiples electrones usando la	
Guarra Zacioni.	
Explica los efectos cuánticos en problemas aplicados	
Identifica y analiza los componentes, la estructura y las interacciones nucleares en la resolución de problemas utilizando conocimientos de física clásica.	
	Identifica y analiza los componentes, la estructura y las interacciones nucleares en la resolución de problemas utilizando conocimientos de física

9.9. El Decaimiento Alfa.	
9.10. El Decaimiento Beta	
10. REACCIONES Y	Identifica y analiza
DISPOSITIVOS	los componentes, la
NUCLEARES	estructura
10.1. Reacciones Nucleares	y las interacciones
de Baja Energía.	nucleares en la
10.2. La Energética de	resolución de
Reacciones Nucleares.	problemas utilizando
10.3. Conservación de	conocimientos de
Momento y el Umbral de	física
las Reacciones Nucleares.	clásica.
10.4. La Sección Cruzada	
de una Reacción	
Nuclear.	
10.5. El Núcleo Compuesto	
y los Niveles de	
Énergía Nucleares.	
10.6. Fisión Nuclear.	
10.7. Neutrones y	
Reactores Nucleares.	
10.8. Fusión Nuclear.	
10.9. lonización y Absorción	
de Radiación	
Nuclear.	
10.10.Detectores de	
Radiación Nuclear.	
10.11. Dispositivos de	
Trazamiento y Grabado.	
10.12.Dispositivos para	
Medición de Velocidad,	
Momento y Masa.	
10.13.Aceleradores	
Nucleares.	
10.14.Rayos de Colisión	
(sincrotrones).	
11. LAS PARTÍCULAS	Identifica y analiza
ELEMENTALES	los componentes, la
11.1. Interacción	estructura
Electromagnética.	y las interacciones
11.2. Interacciones Fuerte,	nucleares en la
Débil y Gravitacional.	resolución de
11.3. Propiedades de las	problemas utilizando
Partículas	conocimientos de
Fundamentales	física
Observadas.	clásica.
11.4. Leyes de	
Conservación	
Universalmente	
Válidas.	
11.5. Leyes de	
Conservación Adicionales	
para	
Interacciones Fuertes y	
Electromagnéticas.	
11.6. Partículas	
Resonantes.	
11.7. Quarks: Partículas	
Sub-Hadrónicas.	

FUENTES DE INFORMACIÓN	EVALUACIÓN DE LOS APRENDIZAJES
(Bibliografía, direcciones electrónicas)	(Criterios, ponderación e instrumentos)
Serway, R. A. (2015). Física para ciencias e ingeniería. Tipler, P. A., & Llewellyn, R. (2003). <i>Modern physics</i> . Macmillan.	Se toma en cuenta para integrar calificaciones parciales: • 3 exámenes parciales escritos donde se evalúa conocimientos, comprensión y aplicación. Con un valor del 30%, 30% y 40% respectivamente.
Felder, G. N., & Felder, K. M. (2022). <i>Modern physics</i> . Cambridge University Press.	La acreditación del curso se integra: Exámenes parciales: 70% Laboratorios y/o prácticas: 20% Cuestionarios, resúmenes, participación en exposiciones, discusión individual, por equipo y grupal: 10% Asistencia: 0% Nota: para acreditar el curso se deberá tener calificación aprobatoria tanto en la teoría como en las prácticas. La calificación mínima aprobatoria será de 7.0 Resumen de Temas, lista de cotejo para evaluar el resumen, 10% Portafolio de evidencias, rúbrica para evaluar los ejercicios, 40% Exposición de ejercicios, rúbrica para evaluar la exposición, 30% Auto-evaluación 10% Coevaluación 10%

CRONOGRAMA

Objetos de estudio		Semanas														
	1	2	3	4	5	6	7	8	9	10	1 1	1 2	13	14	15	16
1. Conceptos básicos																
2. Cinemática relativista																
3. Dinámica relativista: momento y energía																
4. Los aspectos de partícula de radiación electromagnética																
5. Propiedades ondulatorias de las OEM																-

´S								
6. La estructura del átomo								
de Hidrógeno								
7. Átomos con múltiples								
electrones								
8. Efectos cuánticos y								
dispositivos								
9. Estructura nuclear								
10. Reacciones y								
dispositivos nucleares								
11. Las partículas								
elementales								