UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

UNIDAD ACADÉMICA: FACULTAD DE INGENIERÍA

PROGRAMA ANALÍTICO DE LA UNIDAD DE APRENDIZAJE:

FÍSICA EXPERIMENTAL.

DES:	INGENIERÍA							
Programa académico	Ingeniero Físico							
Tipo de materia (Obli/Opta):	Obligatoria							
Clave de la materia:	FI504							
Semestre:	Quinto							
Área en plan de estudios:	FI504							
Total de horas por semana:	3							
Teoría: Presencial o Virtual	1							
Laboratorio o Taller:	2							
Prácticas:	NA NA							
Trabajo extra-clase:								
Créditos Totales:	3							
Total de horas semestre (x	48							
sem):								
Fecha de actualización:	28/10/2024							
Drorroquicito (c):	MC305 - Taller de Presentación							
Prerrequisito (s):	de Información Científica							

DESCRIPCIÓN:

En Física Experimental tendrás la experiencia de observar y describir fenómenos físicos desde su perspectiva experimental en las cuales sus propiedades están obscurecidas por errores sistemáticos y aleatorios totalmente inevitables. Además de adquirir y desarrollar las herramientas para extraer dichas propiedades y modelar los fenómenos físicos implicados.

COMPETENCIAS PARA DESARROLLAR:

IFF. INTERPRETACIÓN DE FENÓMENOS FÍSICOS (E)

Evalúa soluciones a problemas concretos y abstractos en ciencias e ingeniería, aplicando los principios fundamentales de la física para su modelado y resolución. Utiliza herramientas analíticas y numéricas.

RM. RAZONAMIENTO MATEMÁTICO

Emplea técnicas de matemáticas avanzadas para ciencias e ingeniería que provean las habilidades teóricas y de abstracción necesarias para analizar y resolver problemas de aplicación de forma analítica o con aproximaciones numéricas y métodos computacionales.

HEME. HABILIDADES EXPERIMENTALES Y MANEJO DE EQUIPO

Manipula equipos de distintos laboratorios, para la adquisición y manipulación de datos, con base en el diseño experimental y el modelado de fenómenos físicos. Se apega a las normas de seguridad vigentes.

B4. TRANSFORMACIÓN DIGITAL

Transforma la cultura digital en la sociedad, en las organizaciones e instituciones educativas para aprovechar al máximo el potencial de las tecnologías y herramientas digitales; propiciar su uso responsable y ético que estimule la creatividad, innovación, la comunicación efectiva y el trabajo colaborativo e interdisciplinar en la solución de problemas de la sociedad digital; promoviendo la privacidad y la seguridad, así como el respeto a los derechos de autor y la propiedad intelectual.

DOMINIOS	ODJETOO DE ESTUDIO	DECLUITADOS DE	METODOLOGÍA	EV/IDENIO: 4.0					
DOMINIOS	OBJETOS DE ESTUDIO	RESULTADOS DE	METODOLOGÍA	EVIDENCIAS (Productos					
(Se toman de	(Contenidos necesarios	APRENDIZAJE	(Estrategias,	(Productos					
las	para desarrollar cada	(Se plantean de los	secuencias,	tangibles que					
competencias)	uno de los dominios)	dominios y	recursos	permiten valorar					
		contenidos)	didácticos)	los resultados de					
IFF1.	1. El error en las	Realiza el diseño	Aprendizaje	aprendizaje) Tareas con					
Describe y	ciencias físicas	experimental de un	basado en la	Tareas con solución de					
comprende los	1.1. Incertidumbres en la	<u> </u>	solución de	problemas					
principios	medición	selecciona el	problemas.	problemas					
fundamentales	1.2. Precisión en la	equipo de	problemas.	Reporte de					
de la física y	medición	experimentación	Aprendizaje	prácticas de					
su evolución	1.3. Exactitud en la	adecuado.	basado en	laboratorio.					
histórica.	medición	auccuauo.	proyectos:	laboratorio.					
mstorica.	2. Errores aleatorios en	Ejecuta mediciones	Experimentación						
RM4.	las mediciones	sobre su	en el laboratorio.						
Emplea	2.1. Distribuciones de	experimento y							
técnicas	probabilidad	reporta la	Estudios de casos.						
avanzadas de	2.2. El valor esperado	distribución de							
matemáticas	2.3. La desviación	probabilidad y sus							
para la	estándar	propiedades							
interpretación	2.4. Muestreo	asociada a una							
de diversos	2.5. El error en el error	variable aleatoria.							
fenómenos.	2.6. Reportando								
	resultados.								
HEME2.	3. La incertidumbre								
Analiza	como probabilidad								
métodos de	3.1. Distribuciones y								
medición con	probabilidad.								
aplicación a	3.2. Límites de confianza								
ciencias e	y barras de error	= :							
ingeniería.	4. Propagación del	-							
Implementand o	error	sobre su							
adecuadament	4.1. En una función univariada.	experimento y reporta la							
e el diseño	4.2. En una función	reporta la distribución de							
experimental y	multivariada.	probabilidad y sus							
análisis de	4.3. Error aleatorio, error	ı ·							
datos. Emite	sistemático y error	l • • •							
juicios con	dominante.	función de							
base en los	4.4. Estrategias	variables							
resultados.	experimentales para la								
	reducción del error.								
B4.2	5. Visualización de	Realiza un ajuste							
Utiliza de	datos	de curva por							
forma	5.1. Buenas prácticas en	mínimos cuadrados							
responsable	la representación gráfica	a sus mediciones y							
las	5.2. Tendencias en un								
tecnologías de	gráfico	clasifica los							
la información,	5.3. El método de	errores.							
comunicación, conocimiento	mínimos cuadrados y la								
y aprendizaje	maximización de la								
y aprendizaje	verosimilitud								

(TICCA), en el			
proceso de	sistemático y el error		
construcción	aleatorio		
de saberes y el	5.5. Residuos		
desarrollo de	6. Mínimos cuadrados y	Realiza y reporta	
proyectos	las barras de errores	pruebas de ajuste a	
sociales	6.1. La importancia de χ^2 .	sus datos	
innovadores	6.2. Barras de errores no	experimentales	
en el ámbito	uniformes.		
digital.	6.3. Ajuste por Mínimos		
	cuadrados ponderados.		
	6.4. Errores en el ajuste		
	de mínimos cuadrados.		
	6.5. Ajuste con		
	restricciones.		
	6.6. Prueba de ajuste		
	usando residuos.		
	7. La matriz de error	Realiza y reporta	
	7.1. Minimización de χ²	covarianzas y	
	7.2. La matriz de	correlaciones sobre	
	covarianza y las	las variables	
	incertidumbres en los	medidas en el	
	parámetros de ajuste.	experimento	
	7.3. Correlaciones a		
	través de las		
	incertidumbres de los		
	parámetros de ajuste.		
	7.4. Covarianza en la		
	propagación del error.	Ejecuta y reporta	
	8. Pruebas de hipótesis		
	8.1. Grados de libertad		
	8.2. Distribución χ^2 para	hipótesis sobre las	
	prueba de hipótesis	medidas del	
	8.3. Calidad de ajuste	experimento	
	8.4. Distribución t de		
	Student		

FUENTES DE INFORMACIÓN (Bibliografía, direcciones electrónicas)	EVALUACIÓN DE LOS APRENDIZAJES (Criterios, ponderación e instrumentos)
Hughes, I. G., Hase, T. (2010). Measurements and their Uncertainties. A practical guide to modern error analysis. Oxford University Press.	Tareas distribuidas en los objetos de estudio según el cronograma.
Bevington, P., Robinson, D. K. (2003). Data reduction and error analysis for physical sciences. McGraw Hill.	Reportes de prácticas de laboratorio y laboratorio virtual.
Taylor, J. R. (1997). An introduction to error analysis. The study of uncertainties in physical measurements. University Science Books	

CRONOGRAMA

Objetos de estudio	o Semanas															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1. El error en las ciencias físicas																
2. Errores aleatorios en las mediciones																
3. La incertidumbre como probabilidad																
4. Propagación del error																
5. Visualización de datos																
6. Mínimos cuadrados y las barras de errores																
7. La matriz de error																
8. Pruebas de hipótesis																