UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

FACULTAD DE INGENIERÍA

PROGRAMA ANALÍTICO DE LA UNIDAD DE APRENDIZAJE:

MECÁNICA CUÁNTICA

DES:	Ingeniería
Programa(s) Educativo(s):	Todas las ingenierías
Tipo de materia (Obli/Opta):	OBL
Clave de la materia:	FI702
Semestre:	Séptimo
Área en plan de estudios (B, P, E):	Р
Total de horas por semana:	5
Teoría: Presencial o Virtual	5
Laboratorio o Taller:	
Prácticas:	
Trabajo extra-clase:	
Créditos Totales:	5
Total de horas semestre (16 semanas):	80
Fecha de actualización:	19/02/2024
Prerrequisito (s)	Fisica moderna, EDP, Teo. Electromagnética

PROPÓSITO DEL CURSO:

Estudiar los fenómenos microscópicos de las partículas y sistemas físicos, empleando el análisis y el cálculo en su modelación, solución e interpretación, que comprenden la física cuántica, comprendiendo la indeterminación probabilística de la teoría y empleando la formulación de Schrödinger, promoviendo su aplicación, y su extensión, a las ciencias básicas y la ingeniería, mediante el uso eficiente de herramientas tecnológicas y el fortalecimiento del pensamiento lógico y analítico.

COMPETENCIAS POR DESARROLLAR:

B1. EXCELENCIA Y DESARROLLO HUMANO

Promueve el desarrollo humano integral con resultados tangibles obtenidos en la formación de profesionales con conciencia ética y solidaria, pensamiento crítico y creativo, así como una capacidad innovadora, productiva y emprendedora en el marco de la innovación y pertinencia social, con matices éticos y de valores, que desde su particularidad cultural le permitan respetar la diversidad, promover la inclusión, valorar la interculturalidad.

Competencias profesionales

P1. CIENCIAS E INGENIERÍA.

Aplica los conocimientos y metodologías para el planteamiento y resolución de problemas complejos de las ciencias naturales y de la ingeniería, para la toma de decisiones en un contexto de responsabilidad social y del medio ambiente.

DB3. HERRAMIENTAS MATEMÁTICAS

Resuelve problemas tanto abstractos como aplicados en las áreas de las ciencias e ingenierías,

aplicando las herramientas, el lenguaje o los métodos del modelado matemático.

DOMINIOS	OBJETOS DE ESTUDIO (Contenidos, temas y subtemas)	RESULTAD OS DE APRENDIZA JE	METODOLOG ÍA (Estrategias, secuencias, recurso s didáctic os)	EVIDENCIAS
Resuelve mediante el uso de herramientas matemáticas, problemas inherentes a las áreas científicas. B1,2 Propone la solución de problemas con una base interdisciplinar (científica, humanística y tecnológica)	1. ELEMENTOS DE ÁLGEBRA LINEAL 1.1. Vectores 1.2. Productos internos 1.3. Matrices 1.4. Cambio de base 1.5. Vectores y valores propios 1.6. Transformaciones hermíticas	Identifica los conceptos y herramientas de álgebra lineal necesarios para la introducción a la mecánica cuántica Resuelve problemas abstractos de álgebra lineal Identifica la notación de Dirac	Clase introductoria por parte del maestro. Ejercicios en clase. Resolución de ejercicios propuestos fuera de clase.	Examen escrito. Cuaderno con la resolución de ejercicios de clase y fuera del aula.
Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad.	2. INTRODUCCIÓN A LA MECÁNICA CUÁNTICA 2.1. Postulados de la mecánica cuántica 2.2. La función de onda 2.3. Observables y operadores 2.4. El proceso de medición y relaciones de incertidumbre 2.5. Evolución temporal del estado de un sistema 2.6. La ecuación de Schrödinger	Identifica los postulados de la mecánica cuántica y sus elementos Calcula las propiedades de la función de onda Relaciona el proceso de medición con la incertidumbre cuántica	Clase introductoria por parte del maestro. Ejercicios en clase. Resolución de ejercicios propuestos fuera de clase.	Examen escrito. Cuaderno con la resolución de ejercicios de clase y fuera del aula.
Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad. Resuelve mediante el uso de herramientas matemáticas, problemas inherentes a las áreas	3. SISTEMAS EN 1 DIMENSIÓN 3.1. Estados estacionarios 3.2. El pozo infinito de potencial 3.3. El oscilador armónico 3.4. La partícula libre 3.5. El pozo finito de potencial 3.6. Transmisión y reflexión 3.7. Tunelaje cuántico	Identifica distintos sistemas cuánticos unidimensionales Resuelve sistemas cuánticos por medio de la ecuación de Schrödinger Discute los fenómenos cuánticos de	Clase introductoria por parte del maestro. Ejercicios en clase. Resolución de ejercicios propuestos fuera de clase.	Examen escrito. Cuaderno con la resolución de ejercicios de clase y fuera del aula.

científicas.		cuantización y tunelaje		
Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad. Resuelve mediante el uso de herramientas matemáticas, problemas inherentes a las áreas científicas.	4. FORMALISMO DE LA MECÁNICA CUÁNTICA 4.1. Función de onda y espacios de Hilbert 4.2. Notación de Dirac 4.3. Estados determinados 4.4. Eigenfunciones de operadores hermíticos 4.5. Espectro discreto y continuo 4.6. El principio de incertidumbre 4.7. Bases continuas y discretas	Identifica las características formales en el estudio de sistemas cuánticos Relaciona el carácter matemático con la evolución dinámica de sistemas cuánticos	Clase introductoria por parte del maestro. Ejercicios en clase. Resolución de ejercicios propuestos fuera de clase.	Examen escrito. Cuaderno con la resolución de ejercicios de clase y fuera del aula.
Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad. Resuelve mediante el uso de herramientas matemáticas, problemas inherentes a las áreas científicas	5. SISTEMAS EN 2 Y 3 DIMENSIONES 5.1 Momento angular orbital 5.2 Eigenfunciones y eigenvalores 5.3 Ecuación de Schrödinger en 3D 5.4 Ecuaciones radial y angular: armónicos esféricos 5.5 El átomo de Hidrógeno 5.6 Espín 1/2	Identifica la ecuación de Schrödinger en 3 dimensiones Determina los eigenvalores y eigenvalores del momento angular Resuelve problemas en 3 dimensiones	Clase introductoria por parte del maestro. Ejercicios en clase. Resolución de ejercicios propuestos fuera de clase.	Examen escrito. Cuaderno con la resolución de ejercicios de clase y fuera del aula.
Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad.	6. PARTÍCULAS IDÉNTICAS 6.1. Sistemas de 2 partículas 6.2. Bosones y fermiones 6.3. Intercambio de partículas 6.4. Espín 6.5. Sistemas multi- partículas 6.6. Helio 6.7. La tabla periódica	Identifica las propiedades inherentes a sistemas de varias partículas Reconoce las propiedades de simetría de intercambio Aplica el formalismo a sistemas multi partículas	Clase introductoria por parte del maestro. Ejercicios en clase. Resolución de ejercicios propuestos fuera de clase.	Examen escrito. Cuaderno con la resolución de ejercicios de clase y fuera del aula.
Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad.	7. MÉTODOS DE APROXIMACIÓN 7.1. Teoría de perturbaciones independiente del tiempo 7.2. Sistemas no degenerados 7.3. Sistemas degenerados	Identifica la necesidad de emplear métodos de aproximación para resolver sistemas cuánticos	Clase introductoria por parte del maestro. Ejercicios en clase. Resolución de ejercicios	Examen escrito. Cuaderno con la resolución de ejercicios de clase y fuera del aula.

7.4. El principio variacional 7.5. El método WKB 7.6. Aplicaciones	adecuadamente problemas empleando métodos de aproximación adecuados	propuestos fuera de clase.	
---	--	-------------------------------	--

FUENTES DE INFORMACIÓN (Bibliografía, direcciones electrónicas)	EVALUACIÓN DE LOS APRENDIZAJES (Criterios, ponderación e instrumentos)
Griffiths, D. & Schroeter D. (2018). Introduction to quantum mechanics. Cambridge U.P. (3 rd ed). Zettili, N. (2009). Quantum mechanics, concepts and applications. Wiley. Scherrer, R.J. (2006). Quantum Mechanics: An Accessible Introduction. Pearson Terce La actres ede 30 Nota que sasiste evalue	uaciones parciales en función de las encias presentadas durante el curso. nera evaluación parcial: Examen escrito 60%. Ejercicios en clase y tareas 40% unda evaluación parcial: Examen escrito 60%. Ejercicios en clase y tareas 40% rera evaluación parcial: Examen escrito 60%. Ejercicios en clase y tareas 40% rera evaluación parcial: Examen escrito 60%. Ejercicios en clase y tareas 40% creditación del curso toma en cuenta estas evaluaciones parciales en una proporción 0%, 30% y 40%. Le l reglamento general académico indica se debe tener como mínimo el 80% de la tencia a la clase para tener derecho a uación ordinaria. Un porcentaje menor del a clase implica no acreditar el curso.

CRONOGRAMA DEL AVANCE PROGRAMÁTICO

Objeto s de		Semana S														
estudio	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6
ELEMENTOS DE ÁLGEBRA LINEAL																
INTRODUCCIÓ N A LA MECÁNICA CUÁNTICA																
SISTEMAS EN 1 DIMENSIÓN																
FORMALISMO DE LA MECÁNICA CUÁNTICA																

SISTEMAS EN 2 Y 3								
DIMENSIONES PARTÍCULAS								
IDÉNTICAS								
MÉTODOS DE APROXIMACI ÓN								