UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

UNIDAD ACADÉMICA: FACULTAD DE INGENIERÍA

PROGRAMA ANALÍTICO DE LA UNIDAD DE APRENDIZAJE:

GRAVITACIÓN I

DES:	Ingeniería
Programa(s) Educativo(s):	Todas las ingenierías
Tipo de materia (Obli/Opta):	Opt
Clave de la materia:	OPFI702
Semestre:	Séptimo
Área en plan de estudios (B, P, E):	Е
Total de horas por semana:	5
Teoría: Presencial o Virtual	5
Laboratorio o Taller:	
Prácticas:	
Trabajo extra-clase:	
Créditos Totales:	5
Total de horas semestre (16 semanas):	80
Fecha de actualización:	19/02/2024
Prerrequisito (s)	Mecanica analítica, teoría electromagnética, EDP

PROPÓSITO DEL CURSO:

El estudiante extiende su comprensión de fenómenos físicos a aquellos que se desarrollan a velocidades cercanas de la luz, o en regiones cercanas a objetos muy masivos, basándose en la universalidad de las leyes de la física y de la constancia de la rapidez de la luz; describe la equivalencia materia-energía y las consecuencias de los postulados de simultaneidad en la descripción de la naturaleza, promoviendo su aplicación, y su extensión, a las ciencias básicas y la ingeniería, mediante el uso eficiente de herramientas tecnológicas y el fortalecimiento del pensamiento lógico y analítico.

COMPETENCIAS POR DESARROLLAR:

B1. EXCELENCIA Y DESARROLLO HUMANO

Promueve el desarrollo humano integral con resultados tangibles obtenidos en la formación de profesionales con conciencia ética y solidaria, pensamiento crítico y creativo, así como una capacidad innovadora, productiva y emprendedora en el marco de la innovación y pertinencia social, con matices éticos y de valores, que desde su particularidad cultural le permitan respetar la diversidad, promover la inclusión, valorar la interculturalidad.

Competencias profesionales

P1. CIENCIAS E INGENIERÍA.

Aplica los conocimientos y metodologías para el planteamiento y resolución de problemas complejos de las ciencias naturales y de la ingeniería, para la toma de decisiones en un contexto de responsabilidad social y del medio ambiente.

DB3. HERRAMIENTAS MATEMÁTICAS

Resuelve problemas tanto abstractos como aplicados en las áreas de las ciencias e ingenierías, aplicando las herramientas, el lenguaje o los métodos del modelado matemático.

		METODOLOG							
DOMINIOS	OBJETOS DE ESTUDIO (Contenidos, temas y subtemas)	RESULTAD OS DE APRENDIZA JE	ÍA (Estrategias, secuencias, recurso s didáctic	EVIDENCIAS					
Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad. B1,2 Propone la solución de problemas con una base interdisciplinar (científica, humanística y tecnológica)	1. FUNDAMENTOS DE RELATIVIDAD ESPECIAL 1.1. El principio de relatividad 1.2. Las transformaciones de Galileo 1.3. El éter 1.4. Las transformaciones de Lorentz 1.5. Causalidad 1.6. Contracción del espacio 1.7. Dilatación del tiempo 1.8. Velocidad relativa 1.9. Representación matricial	Identifica los postulados de la relatividad especial Comprende las transformaciones de Lorentz en una dimensión espacial Reproduce las consecuencias de las transformaciones de Lorentz	Clase introductoria por parte del maestro. Ejercicios en clase. Resolución de ejercicios propuestos fuera de clase.	Examen escrito. Cuaderno con la resolución de ejercicios de clase y fuera del aula.					
Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad.	2. FORMALISMO DE RELATIVIDAD ESPECIAL 2.1. La noción tetra dimensional 2.2. Diagramas de espacio-tiempo 2.3. Vectores y tensores en espacio plano 2.4. Álgebra tensorial 2.5. El tensor métrico y la métrica de Minkowski 2.6. Ecuaciones de Maxwell en forma covariante	Reconoce la notación de cuadrivectores en relatividad especial Identifica fenómenos en diagramas de espacio-tiempo Manipula el álgebra tensorial en espacio plano	Clase introductoria por parte del maestro. Ejercicios en clase. Resolución de ejercicios propuestos fuera de clase.	Examen escrito. Cuaderno con la resolución de ejercicios de clase y fuera del aula.					
Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad. Resuelve mediante el uso de herramientas matemáticas, problemas inherentes a las áreas	3. GEOMETRÍA DIFERENCIAL I 3.1. Gravedad y geometría 3.2. Variedades diferenciables 3.3. Vectores y uno- formas 3.4. Tensores y formas diferenciales 3.5. Tensor métrico 3.6. Aplicaciones	Reconoce la relación entre curvatura y gravedad Interpreta las definiciones básicas de geometría diferencial Analiza la relación entre los conceptos geométricos y	Clase introductoria por parte del maestro. Ejercicios en clase. Resolución de ejercicios propuestos fuera de clase.	Examen escrito. Cuaderno con la resolución de ejercicios de clase y fuera del aula.					

científicas.		físicos		
Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad. Resuelve mediante el uso de herramientas matemáticas, problemas inherentes a las áreas científicas.	4. GEOMETRÍA DIFERENCIAL II 4.1. Derivadas covariantes 4.2. Transporte paralelo 4.3. Geodésicas 4.4. Curvatura 4.5. Tensor de Riemann 4.6. Propiedades del tensor de Riemann 4.7. Tensor de Ricci y escalar de curvatura 4.8. Simetrías y vectores de Killing	Reconoce los objetos geométricos que definen la curvatura del espacio-tiempo Reproduce las simetrías del tensor de Riemann Discute el concepto de simetría y su formulación matemática	Clase introductoria por parte del maestro. Ejercicios en clase. Resolución de ejercicios propuestos fuera de clase.	Examen escrito. Cuaderno con la resolución de ejercicios de clase y fuera del aula.
Utiliza conceptos, métodos y leyes fundamentales de las ciencias básicas para dar soluciones a problemas complejos de ciencias e ingeniería analizando los resultados para emitir conclusiones acordes a la realidad.	5. GRAVITACIÓN 5.1. La física en espaciostiempo curvos 5.2. Deducción de las ecuaciones de Einstein 5.3. La acción de Einstein-Hilbert 5.4. Límite Newtoniano 5.5. Propiedades de las ecuaciones de Einstein 5.6. La constante cosmológica	Analiza la relación formal entre geometría y gravedad Deduce las ecuaciones de Einstein Resume las propiedades de las ecuaciones de Einstein	Clase introductoria por parte del maestro. Ejercicios en clase. Resolución de ejercicios propuestos fuera de clase.	Examen escrito. Cuaderno con la resolución de ejercicios de clase y fuera del aula.

FUENTES DE INFORMACIÓN (Bibliografía, direcciones electrónicas)	EVALUACIÓN DE LOS APRENDIZAJES (Criterios, ponderación e instrumentos)
Faraoni, V. (2013). <i>Special relativity.</i> Springer.	Evaluaciones parciales en función de las evidencias presentadas durante el curso.
Carrol, S. (2004). Spacetime and geometry, an introduction to general relativity. U. of Chicago.	Primera evaluación parcial: Examen escrito 60%. Ejercicios en clase y tareas 40% Segunda evaluación parcial:
Ryder, L. (2009). <i>Introduction to general relativity.</i> Cambridge U. Press.	Examen escrito 60%. Ejercicios en clase y tareas 40% Tercera evaluación parcial: Examen escrito 60%.
Rindler, W. (2006). <i>Relativity, special, general and cosmological</i> . Oxford U Press.	Ejercicios en clase y tareas 40%
	La acreditación del curso toma en cuenta estas tres evaluaciones parciales en una proporción de 30%, 30% y 40%.

Nota. El reglamento general académico indica que se debe tener como mínimo el 80% de la asistencia a la clase para tener derecho a evaluación ordinaria. Un porcentaje menor del 60% a clase implica no acreditar el curso.

CRONOGRAMA DEL AVANCE PROGRAMÁTICO

Objeto s de	Semana S															
estudio	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6
FUNDAMENTO S DE RELATIVIDAD ESPECIAL																
FORMALISMO DE RELATIVIDAD ESPECIAL																
GEOMETRÍA DIFERENCIA L I																
GEOMETRÍA DIFERENCIAL II																
GRAVITACIÓN																