UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

UNIDAD ACADÉMICA: FACULTAD DE CIANCIAS QUÍMICAS

PROGRAMA DEL CURSO: INGENIERIA DE PROCESOS INDUSTRIALES

DES:	INGENIERÍA Y CIENCIAS						
Programa(s) académico(s)	Ingeniero Químico						
Tipo de Materia: Obligatoria / Optativa	Obligatoria						
Clave de la Materia:	IQ911						
Semestre:	Noveno						
Área en plan de estudios (B,P,E, O):	Integradora						
Total de horas por semana:	3						
Laboratorio o Taller:	3						
h./semana trabajo presencial/virtual	0						
h./semana laboratorio/taller	0						
h. trabajo extra-clase:	0						
Total de horas por semestre: Total de horas semana por 16 semanas	48						
Créditos totales:	3						
Fecha de actualización:	5/12/2019						
Prerrequisito (s):	Operaciones Unitarias III						

DESCRIPCIÓN DE LA UNIDAD DE APRENDIZAJE/ CURSO:

Este curso se imparte en el noveno semestre del programa y forma parte del bloque de materias específicas de la ingeniería química. El objetivo de este curso es el de aplicar los procedimientos de análisis y síntesis en el diseño conceptual de procesos químicos.

COMPETENCIA PRINCIPAL QUE SE DESARROLLA:

IQ_E 1. Emplea los modelos matemáticos que describen los fenómenos fisicoquímicos para el cálculo de condiciones de operación de equipo para desarrollar el diseño conceptual de los procesos.

DOMINIOS (Se toman de competencia	las ESTUDIO (Contenidos necesarios para desarrollar cada uno de los dominios)	RESULTADOS DE APRENDIZAJE (Se plantean de los dominios y contenidos)	METODOLOGÍA (Estrategias, secuencias, recursos didácticos)	EVIDENCIAS (Productos tangibles que permiten valorar los resultados de aprendizaje)			
IQ_E 1.3. Aplica las herramientas de un software especializado para simular la operación de los equipos y del proceso para sintetizar una propuesta de diseño conceptual	1. Introducción.	Identifica Sistemas A fin de Utilizar los métodos de aproximación al diseño de los procesos químicos	Exposiciones del profesor Estudio Individual Aprendizaje basado en problemas	Problemas Exámenes escritos			
IQ_E 1.3. Aplica las herramientas de un software especializado para simular la operación de los equipos y del proceso para sintetizar una propuesta de diseño conceptual	2 Selección del reactor	Selección del reactor Eliminación de rutas de reacción mediante el cálculo de la utilidad bruta. Selecciona el reactor en función del tipo de sistema de reacción, ordenes de reacción, concentración de reactivos, energías de activación, fase de la reacción, catalizadores etc.	Exposiciones del profesor Estudio Individual Aprendizaje basado en problemas	Problemas Exámenes escritos			
IQ_E 1.3. Aplica las herramientas de un software especializado para simular la operación de los equipos y del proceso para sintetizar una propuesta de diseño conceptual	3. Alternativas de distribución de productos y reactivos.	Genera al menos tres opciones de operaciones de separación para satisfacer los requerimientos de los diagramas de distribución de productos y reactivos con base en el aprovechamiento de las diferencias en propiedades físicas y/o químicas de las sustancias involucradas en el proceso.	Exposiciones del profesor Estudio Individual Aprendizaje basado en problemas	Problemas Exámenes escritos			
IQ_E 1.3. Aplica las herramientas de un software especializado para simular la	4. Selección de operaciones de separación.	Selecciona las secuencias de separación	Exposiciones del profesor Estudio Individual	Problemas Exámenes escritos			

operación de los equipos y del proceso para sintetizar una propuesta de diseño conceptual			Aprendizaje basado en problemas	
IQ_E 1.3. Aplica las herramientas de un software especializado para simular la operación de los equipos y del proceso para sintetizar una propuesta de diseño conceptual	5. Secuencias de destilación	Selecciona secuencias de destilación.	Exposiciones del profesor Estudio Individual Aprendizaje basado en problemas	Problemas Exámenes escritos
IQ_E 1.3. Aplica las herramientas de un software especializado para simular la operación de los equipos y del proceso para sintetizar una propuesta de diseño conceptual	6. Síntesis de redes de intercambiadores.	Diseña la red de intercambiadores de calor utilizando el método de pliegue (The Pinch Design Method).	Exposiciones del profesor Estudio Individual Aprendizaje basado en problemas	Problemas Exámenes escritos

FUENTES DE INFORMACIÓN (Bibliografía, direcciones electrónicas)	EVALUACIÓN DE LOS APRENDIZAJES (Criterios, ponderación e instrumentos)
Smith, R.: "Chemical Process Design". Mc Graw-Hill Inc.	Examen Escritos
Turton, R., Bailie, R. C., whiting, W. B., shaeiwitz, T.A., Analysis, Synthesis, and Design of Chemical Processes, Upper Saddle River, New Jersey, Prentice-Hall, 1998.	100% de los reactivos
Seider, W. D., Seader, J. D., Lewin, D. R., Process Design Principles: Synthesis, Analysis and Evaluation, New York, John Wiley and Sons, Inc. 1999.	

CRONOGRAMA DEL AVANCE PROGRAMÁTICA

Objetos de estudio	Semanas															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Introducción	х															
Selección del reactor		Х	х	х	х											
Reconocimiento parcial 1					х											
Diagramas de distribución						Х	Х	Х								
de productos y reactivos																
Reconocimiento Parcial 2								х								
Selección de separadores									х	х	х					
Reconocimiento Parcial 3											Х					
Secuencias de destilación												Х	х			
Diseño de redes de														Х	Х	Х
intercambiadores de calor																
Reconocimiento Final																Х