UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

PROGRAMA ANALÍTICO DE LA UNIDAD DE APRENDIZAJE:

PROCESAMIENTO DIGITAL DE SEÑALES

DES:	INGENIERÍA							
Programa Educativo	Ingeniería en Sistemas							
Flograma Educativo	Computacionales en Hardware							
Tipo de materia (Obli/Opta):	Optativa							
Clave de la materia:	931							
Semestre:	9							
Área en plan de estudios (G, E):	E							
Total de horas por semana:	4							
Teoría: Presencial o Virtual	4							
Laboratorio o Taller:	0							
Prácticas:	0							
Trabajo extra-clase:	0							
Créditos Totales:	4							
Total de horas semestre (x 16 sem):	64							
Fecha de actualización:	Enero 2023							
Prerrequisito (s):	Análisis de Sistemas Lineales, (748)							
Realizado por:	Comité de Rediseño Curricular							

Propósito del Curso:

El curso promueve en el estudiante la capacidad de distinguir señales continuas y discretas, aplicar muestreo y procesarlas para filtrarlas, atenuarlas o amplificarlas.

Al final del curso el estudiante:

- Modelado, en un primer momento de las señales que forman la información de entrada a un sistema, desde un punto de vista matemático I
- Describe sus principales propiedades []
- Explica como un sistema se afecta por sus propiedades
- Reconoce como estos atributos ayudan a modelar un sistema que modifique dichas propiedades de la señal, para expresarla en distintos dominios. Especial énfasis se hace al modelado de filtros de señales. El análisis matemático y el diseño práctico de sistemas de procesamiento de señales se lleva a cabo tanto en el dominio continuo, como el dominio discreto, tanto en el dominio espacio temporal, como en el dominio de la frecuencia

DOMINIOS (Se toman de las competencias)	OBJETOS DE ESTUDIO (Contenidos necesarios para desarrollar cada uno de los dominios)	RESULTADOS DE APRENDIZAJE (Se plantean de los dominios y contenidos)	METODOLOGÍA (Estrategias, secuencias, recursos didácticos)	EVIDENCIAS (Productos tangibles que permiten valorar los resultados de aprendizaje)			
Especificas. Sistemas Electrónicos. Descripción: Aplica la ingeniería electrónica y de sistemas computacionales para dar soporte tecnológico a otros campos y resolver problemas en distintos sectores y áreas del conocimiento.	UNIDAD I. TEORIA DE SISTEMAS Y SEÑALES DISCRETOS 1.1 Señales Discretas y Teorema de Muestreo. 1.1.1 Señales determinísticas y estocásticas. 1.1.2 Teorema de muestreo de Nyquist- Shannon. 1.2 Sistemas Discretos. 1.2.1 Discretización de sistemas. 1.2.2 Ecuaciones de Diferencia. 1.3 Transformada Z. 1.3.1 Funciones básicas. 1.3.2 Propiedades y Teoremas. 1.4 Función de Transferencia y Convolución.	Conoce y aplica los Conceptos fundamentales sobre el tratamiento de señales y sistemas en el dominio del tiempo discreto.	 Lectura Crítica Búsqueda de información Implementació n de algoritmos computacional es Resolución de problemas analíticos 	Tareas de Investigación o extra clase. Reporte de implementación de algoritmos computacionales.			
Dominio: Aplica las matemáticas avanzadas para el análisis de señales y sistemas en el dominio del tiempo y la frecuencia.	UNIDAD II. ANÁLISIS DE FOURIER 2.1 Series de Fourier. 2.1.1 Serie Trigonométrica. 2.1.2 Serie Polar. 2.1.3 Serie Exponencial. 2.2 Transformada de Fourier de Tiempo Discreto. 2.3 Transformada de Fourier Discreta. 2.3.1 Algoritmo FFT. 2.4 Transformada de Fourier de Tiempo Corto. 2.4.1 Ventanas de Tiempo. 2.4.2 Espectrogramas.	Analiza y aplica la teoría de Fourier para representar señales discretas en el dominio de la frecuencia utilizando algoritmos computacionales					

UNI	IDAD III.		
FIL	TROS DIGITALES		
3.1	Filtros IIR.	Explica las principales	
3.1.	1 Diseño de filtros IIR a	características de los	
	partir de filtros	filtros digitales, su	
	analógicos.	análisis matemático, en	
3.1.		cuanto a su	
	de algoritmos	funcionamiento, y las	
	discretos.	implicaciones prácticas	
3.1.	3 Transformada	sobre una señal.	
	bilineal.		
3.1.	4 Transformaciones		
	espectrales.		
3.2	Filtros FIR.		
3.2.			
3.2.			
	de la frecuencia.		
3.2.	3 Filtros óptimos.		
UNI	DAD IV.		
TOI	PICOS AVANZADOS		
4.1	Interpolación de señales.	Aplica métodos	
4.1.	1 Interpolación	matemáticos	
	Whitaker-Shannon.	avanzados de	
4.1.	2 Interpolación por	interpolación y	
	Spline cúbico natural.	estadística para	
4.1.	3 Interpolación por	análisis,	
	mínimos cuadrados.	caracterización y	
4.1.	.4 Interpolación por	modelado de señales	
	series de Fourier.	discretas.	
4.1.	5 Modelos de		
	predicción lineal.		
4.1.	.6 Método de Prony.		
4.2	Medidas Estadísticas.		
4.2.	1 Media, Mediana,		
	variancia,		
	covarianza.		
4.2.	 Correlación y Auto 		
	correlación.		
4.2.	3 Entropía.		

FUENTES DE INFORMACIÓN (Bibliografía, direcciones electrónicas)	EVALUACIÓN DE LOS APRENDIZAJES (Criterios, ponderación e instrumentos)
Analog and Digital Signal Processing, Ashok Ambardar, Cengage Learning, 2a edición, 1999. Multimedia Signal Processing: Theory and Applications in Speech, Music and Communications, Saeed V. Vaseghi, John Wiley & Sons Ltd, 2007.	 Se toma en cuenta para integrar calificaciones parciales: Discusión Individual y por equipo, y tareas, lo cual otorga un valor del 20% 3 reportes parciales escritos donde se evalúan conocimientos, comprensión y aplicación con un valor de 80% cada uno.
INTRODUCTION TO DIGITAL SIGNAL PROCESSING AND FILTER DESIGN, B. A. Shenoi, JOHN WILEY & SONS, INC., 2006.	La acreditación del curso se integra por promedio de las 3 calificaciones parciales.
Digital Signal Processing, John G. Proakis and Dimitris K Manolakis, Pearson; 4 edition, 2006.	
Digital Signal Processing: A Practical Approach, Emmanuel C. Ifeachor and Barrie W. Jervis, Prentice Hall; Edición: 2, 2001.	

CRONOGRAMA

Objetos de estudio	Semanas															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
UNIDAD I: TEORIA DE SISTEMAS Y SEÑALES DISCRETOS																
UNIDAD II. ANÁLISIS DE FOURIER																
UNIDAD III. FILTROS DIGITALES																
UNIDAD IV. TOPICOS AVANZADOS																