UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

LUCHAR PARA LOCRAR LAWIVERSIDAD	DCRAR PARA DAR
A	DONOMA OF

Clave: 08MSU0017H FACULTAD DE INGENIERIA

PROGRAMA ANALÍTICO DE LA UNIDAD DE APRENDIZAJE:

LABORATORIO DE MECANICA DE MATERIALES

DES:	Ingeniería						
Programa académico	Ingeniería en Tecnología de						
Frograma academico	Procesos						
Tipo de materia (Obli/Opta):	Obligatoria						
Clave de la materia:	LCI408						
Semestre:	4						
Área en plan de estudios (B, P	Profesional						
y E):	Floresional						
Total de horas por semana:	1						
Teoría: Presencial o Virtual							
Laboratorio o Taller:							
Prácticas:	1						
Trabajo extra-clase:							
Créditos Totales:	1						
Total de horas semestre (x 16	16						
sem):							
Fecha de actualización:	Septiembre 2017						
	•						
	CB303						
Prerrequisito (s):	CI408						

DESCRIPCIÓN DEL CURSO:

El alumno reforzara lo aprendido en el aula de clases mediante el estudio de los efectos internos que experimenta un cuerpo sometido a una carga, utilizando modelos idealizados sometidos a restricciones y cargas simplificadas, además aplica fórmulas que proporciona soluciones a problemas técnicos básicos

COMPETENCIAS A DESARROLLAR:

(P) CIENCIAS FUNDAMENTALES DE LA INGENIERÍA

Aporta los fundamentos teóricos-científicos, metodológicos y de herramientas para la solución de problemas en ingeniería

DOMINIOS	OBJETOS DE ESTUDIO (Contenidos organizados por temas y subtemas)	RESULTADOS DE APRENDIZAJE	METODOLOGÍA (Estrategias, recursos didácticos, secuencias didácticas)	EVIDENCIAS		
(B) Aplica los conocimientos de las matemáticas, física y química en el análisis, evaluación y solución de problemas en el ámbito de la ingeniería.	I. Relación esfuerzo deformación 1.1 Esfuerzo normal y deformación en una probeta de acero. 1.2 Esfuerzo y deformación en una muestra a de concreto de varios días de endurecimiento.	Describe la razón del estudio de la mecaniza de materiales mediante conceptos básicos de esfuerzo y deformación unitaria.				
	II. Simulación de esfuerzos 2.1 Análisis de esfuerzos y deformaciones en elementos mecánicos como chavetas, engranes y ejes. 2.2 Simulación de esfuerzos de flexión en vigas con diferente sección transversal. 2.3 Prueba de flexión a diferentes elementos con equipo de laboratorio.	Construye los diagramas de la fuerza cortante y momento flexionante trazando el método grafico del círculo de Mohr y la ley de Hooke	Experimentación en el laboratorio	Reportes de prácticas de laboratorio		
	III. Torsión en barras 3.1 Modelados de barras prismáticas 3.2 Análisis de esfuerzos cortantes por torsión en barras.	Aplica la ecuación definida de momento construyendo diagramas de elementos mecánicos				
	IV. Modelos fotoelesticos 4.1 Polariscopio	Utiliza el equipo polariscopio ilustrando los modelos fotoeléctricos				

FUENTES DE INFORMACIÓN (Bibliografía, direcciones electrónicas)	EVALUACIÓN DE LOS APRENDIZAJES (Criterios, ponderación e instrumentos)
APUNTES DE "MECÁNICA DE MATERIALES" M.I. José Leonel Melchor Ceballos, Facultad de Ingeniería, U.A.CH. MECÁNICA DE MATERIALES James Gere y Stephen Timoshenko APUNTES DE "MECÁNICA DE MATERIALES", Ing. Carlos Alvarado González, Facultad de Ingeniería, U.A.CH. MECÁNICA DE MATERIALES Beer y Johnston. MECÁNICA DE MATERIALES Hibbeler MECÁNICA DE SÓLIDOS Popov.	Se toma en cuenta para integrar calificaciones parciales: • 3 exámenes parciales resueltos en la plataforma donde se evalúa conocimientos, comprensión y aplicación. Con un valor del 30%, 30% y 40% respectivamente La acreditación del curso se integra: • Exámenes parciales: • Trabajos extra clase tales como: cuestionarios, resúmenes, participación en exposiciones, discusión individual, ejercicios en la plataforma, antologías, mapa mental.

Cronograma Del avance programático

Objetos de aprendizaje	Semana															
	s															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
I. Relación efuerzo- deforamcion																
II. Simulación de esfuerzos																
III. Torsión en barras																
IV.Modelos fotoelasticos																